Difference between revisions of "Aufgaben:Exercise 5.3: PACF of PN Sequences"
Line 49: | Line 49: | ||
{Geben Sie folgende PAKF–Werte für den Fall $G = 6$ an. | {Geben Sie folgende PAKF–Werte für den Fall $G = 6$ an. | ||
|type="{}"} | |type="{}"} | ||
− | $φ_c(λ=0)\hspace{0. | + | $φ_c(λ=0)\hspace{0.33cm} = \ $ { 1 3% } |
− | $φ_c(λ=1)\hspace{0. | + | $φ_c(λ=1)\hspace{0.33cm} = \ $ { -0.0165--0.0155 } |
$φ_c(λ=63)\ = \ $ { 1 3% } | $φ_c(λ=63)\ = \ $ { 1 3% } | ||
$φ_c(λ=64)\ = \ $ { -0.0165--0.0155 } | $φ_c(λ=64)\ = \ $ { -0.0165--0.0155 } | ||
Line 59: | Line 59: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | '''(1)''' Die Periodendauer einer M–Sequenz beträgt $P = 2^G -1 \hspace{0.05cm}.$ Daraus ergibt sich mit $P = 15$ der Grad $\underline{G = 4}$. |
− | |||
− | Daraus ergibt sich mit P = 15 der Grad G = 4. | ||
− | |||
− | |||
− | ''' | + | '''(2)''' Von den $P = 15$ Spreizbits sind $8 Einsen$ und $7$ Nullen. Damit gilt wegen $u_ν^{\hspace{0.04cm}2} = u_ν$: |
− | $${\rm E}\left [ | + | :$${\rm E}\left [ u_\nu \right ] = {\rm E}\left [ u_\nu^2 \right ] = {8}/{15} \hspace{0.15cm}\underline {\approx 0.533} \hspace{0.05cm}, \hspace{0.3cm} \text{allgemein:}\,\, (P+1)/(2P)\hspace{0.05cm}.$$ |
− | ''' | + | '''(3)''' In bipolarer Darstellung ist stets $c_ν^{\hspace{0.04cm}2} = 1$. Damit gilt auch für den quadratischen Erwartungswert: |
− | $ | + | :$${\rm E}\left [ c_\nu^{\hspace{0.04cm}2} \right ] \hspace{0.15cm}\underline {= 1}\hspace{0.05cm}.$$ |
− | |||
− | $$ | ||
− | |||
− | '''5 | + | '''(4)''' Richtig sind somit die <u>Lösungsvorschläge 1, 2 und 4</u>: |
− | $$c_\nu = 1 - 2 \cdot u_\nu \hspace{0.3cm} \Rightarrow \hspace{0.3cm} u_\nu = 0: c_\nu = +1\hspace{0.05cm},\hspace{0.3cm}u_\nu = 1: c_\nu = -1 \hspace{0.05cm}.$$ | + | *Die beigefügte Tabelle macht deutlich, dass für die diskreten PAKF–Werte mit $λ = 1$, ... , $14$ gilt: |
+ | :$${\it \varphi}_{u}(\lambda) = {\rm E}\left [ u_\nu \cdot u_{\nu+\lambda} \right ]= {4}/{15} \hspace{0.05cm}.$$ | ||
+ | *Multipliziert man nämlich 〈$u_ν$〉 mit 〈$u_{ν+λ}$〉, wobei für den Index λ wieder die Werte $1$, ... , $14$ einzusetzen sind, so treten im Produkt jeweils vier Einsen auf. | ||
+ | *Dagegen gilt für $λ = P = 15$: | ||
+ | :$${\it \varphi}_{u}(\lambda = 15) = {\rm E}\left [ u_\nu \cdot u_{\nu+P} \right ]= {8}/{15} \hspace{0.05cm}.$$ | ||
+ | |||
+ | '''(5)''' Die bipolaren Koeffizienten $c_ν$ ergeben sich aus den unipolaren Koeffizienten $u_ν$ gemäß der Gleichung | ||
+ | :$$c_\nu = 1 - 2 \cdot u_\nu \hspace{0.3cm} \Rightarrow \hspace{0.3cm} u_\nu = 0\text{:} \ c_\nu = +1\hspace{0.05cm},\hspace{0.3cm}u_\nu = 1\text{:} \ c_\nu = -1 \hspace{0.05cm}.$$ | ||
Damit folgt aus den Rechenregeln für Erwartungswerte: | Damit folgt aus den Rechenregeln für Erwartungswerte: | ||
− | $${\it \varphi}_{c}(\lambda) = {\rm E} \left [ c_\nu \cdot c_{\nu+\lambda} \right ]= {\rm E} \left [ (1 - 2 \cdot u_\nu ) \cdot (1 - 2 \cdot u_\nu ) \right ] | + | :$${\it \varphi}_{c}(\lambda) = {\rm E} \left [ c_\nu \cdot c_{\nu+\lambda} \right ]= {\rm E} \left [ (1 - 2 \cdot u_\nu ) \cdot (1 - 2 \cdot u_\nu ) \right ] = 1 + 4 \cdot {\rm E}\left [ u_\nu \cdot u_{\nu+\lambda} \right ] - 2 \cdot {\rm E}\left [ u_\nu \right ] - 2 \cdot {\rm E}\left [ u_{\nu+\lambda} \right ] \hspace{0.05cm}.$$ |
− | + | Mit dem Ergebnis der Teilaufgabe (2) | |
− | Mit dem Ergebnis der Teilaufgabe | + | :$$ {\rm E}\left [ u_{\nu} \right ]= {\rm E}\left [ u_{\nu+\lambda} \right ]={8}/{15} \hspace{0.05cm},$$ |
− | $$ {\rm E}\left [ u_{\nu} \right ]= {\rm E}\left [ u_{\nu+\lambda} \right ]= | + | und der Teilaufgabe (4) |
− | und der Teilaufgabe | + | :$${\rm E}\left [ u_\nu \cdot u_{\nu+\lambda} \right ] ={4}/{15} \hspace{0.05cm} \,\,{\rm{f\ddot{u}r}}\,\,\lambda = 0, \pm P, \pm 2P, \text{...}$$ |
− | $${\rm E}\left [ u_\nu \cdot u_{\nu+\lambda} \right ] = | + | kommt man somit zum Ergebnis (falls $λ$ kein Vielfaches von $P$): |
− | kommt man somit zum Ergebnis (falls λ kein Vielfaches von P): | + | :$${\it \varphi}_{c}(\lambda) = 1 + 4 \cdot \frac{4}{15} - 2 \cdot \frac{8}{15}- 2 \cdot \frac{8}{15} = - \frac{1}{15} = - \frac{1}{P}\hspace{0.15cm}\underline {\approx - 0.067} \hspace{0.05cm}.$$ |
− | $${\it \varphi}_{c}(\lambda) = 1 + 4 \cdot \frac{4}{15} - 2 \cdot \frac{8}{15}- 2 \cdot \frac{8}{15} \hspace{0.15cm}\underline {\approx - 0.067} = - \ | + | |
+ | [[File:P_ID1885__Mod_A_5_3f.png|right|frame|PAKF einer PN–Sequenz maximaler Länge]] | ||
+ | '''(6)''' Eine M–Sequenz mit Grad $G = 6$ hat die Periodenlänge $P = 63$. Entsprechend dem Ergebnis zur Teilaufgabe (5) erhält man somit: | ||
+ | :$$ {\it \varphi}_{c}(\lambda = 0) \hspace{0.15cm}\underline {= +1} \hspace{0.05cm},$$ | ||
+ | :$$ {\it \varphi}_{c}(\lambda = 1)= - 1/63 \hspace{0.15cm}\underline {\approx - 0.016} \hspace{0.05cm},$$ | ||
+ | :$$ {\it \varphi}_{c}(\lambda = 63) = {\it \varphi}_{c}(\lambda = 0) \hspace{0.15cm}\underline {= +1} \hspace{0.05cm},$$ | ||
+ | :$$ {\it \varphi}_{c}(\lambda = 64) = {\it \varphi}_{c}(\lambda = 1)= - 1/63 \hspace{0.15cm}\underline {\approx - 0.016} \hspace{0.05cm}.$$ | ||
+ | |||
− | |||
− | |||
− | |||
− | |||
{{ML-Fuß}} | {{ML-Fuß}} |
Revision as of 16:46, 1 August 2017
Mit einem rückgekoppelten Schieberegister vom Grad $G$ lässt sich eine Spreizfolge $〈c_ν〉$ mit der (maximalen) Periodenlänge $P = 2^G - 1$ erzeugen, wenn die Rückführungskoeffizienten (Anzapfungen) richtig gewählt sind.
In dieser Aufgabe wird der in der linken Grafik von Beispiel 1 im Theorieteil dargestelle PN–Generator mit der Oktalkennung (31) betrachtet, der wegen $G = 4$ eine Folge mit der Periodenlänge $P = 15$ liefert.
In der Grafik sind die unipolare Folge $〈u_ν〉$ mit $u_ν ∈ \{0, 1\}$ und daraus abgeleitete zyklische Verschiebungen $〈u_{ν+λ}〉$ dargestellt, wobei der Verschiebungsparameter $λ$ Werte zwischen $1$ und $15$ annimmt. Eine Verschiebung um $λ$ bedeutet dabei absolut einen Versatz um $λ · T_c$. Hierbei bezeichnet $T_c$ die Chipdauer.
Für den Einsatz in einem CDMA–System verwendet man allerdings die bipolare (antipodische) Folge $〈c_ν〉$ mit $c_ν ∈ \{+1, -1\}$, die ab der Teilaufgabe (5) untersucht werden soll. Gesucht ist deren periodische Autokorrelationsfunktion (PAKF)
- $${\it \varphi}_{c}(\lambda) = {\rm E} \left [ c_\nu \cdot c_{\nu+\lambda} \right ] \hspace{0.05cm}.$$
Zur Herleitung soll zunächst die PAKF
- $${\it \varphi}_{u}(\lambda) = {\rm E}\left [ u_\nu \cdot u_{\nu+\lambda} \right ]$$
mit den unipolaren Koeffizienten $u_ν ∈ \{0, 1\}$ berechnet werden. Die Umrechnung der Koeffizienten ist durch $c_ν = 1 – 2u_ν$ gegeben.
Hinweise:
- Die Aufgabe gehört zum Kapitel Spreizfolgen für CDMA.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
(2) Von den $P = 15$ Spreizbits sind $8 Einsen$ und $7$ Nullen. Damit gilt wegen $u_ν^{\hspace{0.04cm}2} = u_ν$:
- $${\rm E}\left [ u_\nu \right ] = {\rm E}\left [ u_\nu^2 \right ] = {8}/{15} \hspace{0.15cm}\underline {\approx 0.533} \hspace{0.05cm}, \hspace{0.3cm} \text{allgemein:}\,\, (P+1)/(2P)\hspace{0.05cm}.$$
(3) In bipolarer Darstellung ist stets $c_ν^{\hspace{0.04cm}2} = 1$. Damit gilt auch für den quadratischen Erwartungswert:
- $${\rm E}\left [ c_\nu^{\hspace{0.04cm}2} \right ] \hspace{0.15cm}\underline {= 1}\hspace{0.05cm}.$$
(4) Richtig sind somit die Lösungsvorschläge 1, 2 und 4:
- Die beigefügte Tabelle macht deutlich, dass für die diskreten PAKF–Werte mit $λ = 1$, ... , $14$ gilt:
- $${\it \varphi}_{u}(\lambda) = {\rm E}\left [ u_\nu \cdot u_{\nu+\lambda} \right ]= {4}/{15} \hspace{0.05cm}.$$
- Multipliziert man nämlich 〈$u_ν$〉 mit 〈$u_{ν+λ}$〉, wobei für den Index λ wieder die Werte $1$, ... , $14$ einzusetzen sind, so treten im Produkt jeweils vier Einsen auf.
- Dagegen gilt für $λ = P = 15$:
- $${\it \varphi}_{u}(\lambda = 15) = {\rm E}\left [ u_\nu \cdot u_{\nu+P} \right ]= {8}/{15} \hspace{0.05cm}.$$
(5) Die bipolaren Koeffizienten $c_ν$ ergeben sich aus den unipolaren Koeffizienten $u_ν$ gemäß der Gleichung
- $$c_\nu = 1 - 2 \cdot u_\nu \hspace{0.3cm} \Rightarrow \hspace{0.3cm} u_\nu = 0\text{:} \ c_\nu = +1\hspace{0.05cm},\hspace{0.3cm}u_\nu = 1\text{:} \ c_\nu = -1 \hspace{0.05cm}.$$
Damit folgt aus den Rechenregeln für Erwartungswerte:
- $${\it \varphi}_{c}(\lambda) = {\rm E} \left [ c_\nu \cdot c_{\nu+\lambda} \right ]= {\rm E} \left [ (1 - 2 \cdot u_\nu ) \cdot (1 - 2 \cdot u_\nu ) \right ] = 1 + 4 \cdot {\rm E}\left [ u_\nu \cdot u_{\nu+\lambda} \right ] - 2 \cdot {\rm E}\left [ u_\nu \right ] - 2 \cdot {\rm E}\left [ u_{\nu+\lambda} \right ] \hspace{0.05cm}.$$
Mit dem Ergebnis der Teilaufgabe (2)
- $$ {\rm E}\left [ u_{\nu} \right ]= {\rm E}\left [ u_{\nu+\lambda} \right ]={8}/{15} \hspace{0.05cm},$$
und der Teilaufgabe (4)
- $${\rm E}\left [ u_\nu \cdot u_{\nu+\lambda} \right ] ={4}/{15} \hspace{0.05cm} \,\,{\rm{f\ddot{u}r}}\,\,\lambda = 0, \pm P, \pm 2P, \text{...}$$
kommt man somit zum Ergebnis (falls $λ$ kein Vielfaches von $P$):
- $${\it \varphi}_{c}(\lambda) = 1 + 4 \cdot \frac{4}{15} - 2 \cdot \frac{8}{15}- 2 \cdot \frac{8}{15} = - \frac{1}{15} = - \frac{1}{P}\hspace{0.15cm}\underline {\approx - 0.067} \hspace{0.05cm}.$$
(6) Eine M–Sequenz mit Grad $G = 6$ hat die Periodenlänge $P = 63$. Entsprechend dem Ergebnis zur Teilaufgabe (5) erhält man somit:
- $$ {\it \varphi}_{c}(\lambda = 0) \hspace{0.15cm}\underline {= +1} \hspace{0.05cm},$$
- $$ {\it \varphi}_{c}(\lambda = 1)= - 1/63 \hspace{0.15cm}\underline {\approx - 0.016} \hspace{0.05cm},$$
- $$ {\it \varphi}_{c}(\lambda = 63) = {\it \varphi}_{c}(\lambda = 0) \hspace{0.15cm}\underline {= +1} \hspace{0.05cm},$$
- $$ {\it \varphi}_{c}(\lambda = 64) = {\it \varphi}_{c}(\lambda = 1)= - 1/63 \hspace{0.15cm}\underline {\approx - 0.016} \hspace{0.05cm}.$$