Difference between revisions of "Applets:Dämpfung von Kupferkabeln"

From LNTwww
m (Tasnad verschob die Seite Appletts:Dämpfung von Kupferkabeln nach Dämpfung von Kupferkabeln, ohne dabei eine Weiterleitung anzulegen)
Line 1: Line 1:
==Dämpfung von Kupferkabeln==
 
 
{{LntAppletLink|daempfung}}
 
{{LntAppletLink|daempfung}}
 +
 +
==Programmbeschreibung==
 +
<br>
  
 
==Theoretischer Hintergrund==
 
==Theoretischer Hintergrund==
 +
<br>
 +
===Betragsfrequenzgang und Dämpfungsfunktion===
 +
Es besteht folgender Zusammenhang zwischen dem Betragsfrequenzgang und der Dämpfungsfunktion:
 +
:$$\left | H_{\rm K}(f)\right |=10^{-a_\text{K}(f)/20} = {\rm e}^{-a_\text{K, Np}(f)}.$$
 +
*Der Index &bdquo;K&rdquo; soll deutlich machen, dass das betrachtete LZI&ndash;System ein '''Ka'''abel ist.
 +
*Bei der ersten Berechnungsvorschrift ist die Dämpfungsfunktion $a_\text{K}(f)$ in $\rm dB$ (Dezibel)einzusetzen.
 +
*Bei der zweiten Berechnungsvorschrift ist die Dämpfungsfunktion $a_\text{K, Np}(f)$ in $\rm Np$ (Neper) einzusetzen.
 +
* Es gelten folgende Umrechnungen  $\rm 1 \ dB = 0.05 \cdot \ln (10) \ Np= 0.1151 \ Np$ bzw. $\rm 1 \ Np = 20 \cdot \lg (e) \ dB= 8.6859 \ dB$.
 +
* In diesem Applet werden ausschließlich die dB&ndash;Werte verwendet.
 +
 +
===Dämpfungsfunktion eines Koaxialkabels===
 +
Die Dämpfungsfunktion eines Koaxialkabels wird in [Wel77]<ref>Wellhausen, H. W.: Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren. Frequenz 31, S. 23-28, 1977.</ref> wie folgt angegeben:
 +
 
*Die Dämpfungsfunktion eines Koaxialkabels wird meist in folgender Form angegeben:  
 
*Die Dämpfungsfunktion eines Koaxialkabels wird meist in folgender Form angegeben:  
 
$$a_k(f)=(a_0+a_1\cdot f+a_2\cdot f^{\frac{1}{2}})\cdot l \hspace{0.5cm}\Rightarrow \hspace{0.5cm} \text{Betragsfrequenzgang} \left| H_K(f)\right|=10^{-a_K(f)/20}.$$
 
$$a_k(f)=(a_0+a_1\cdot f+a_2\cdot f^{\frac{1}{2}})\cdot l \hspace{0.5cm}\Rightarrow \hspace{0.5cm} \text{Betragsfrequenzgang} \left| H_K(f)\right|=10^{-a_K(f)/20}.$$
Line 60: Line 75:
 
(16)&nbsp;&nbsp; Nur roter Parametersatz, $l=1$ km, $B=30$ MHz, $r=0.5$, Einstellung &bdquo;Zweidrahtleitung $0.4$ mm&ldquo;:<br>
 
(16)&nbsp;&nbsp; Nur roter Parametersatz, $l=1$ km, $B=30$ MHz, $r=0.5$, Einstellung &bdquo;Zweidrahtleitung $0.4$ mm&ldquo;:<br>
 
Anstieg bis ca. $3\cdot 10^8$ ($f$ ca. $23$ MHz), Integralwert ca. $4.55\cdot 10^9$; ohne $k_1$: $0.93\cdot 10^8$ ($f$ ca. $23$ MHz) bzw. $1.41\cdot 10^9$.<br>
 
Anstieg bis ca. $3\cdot 10^8$ ($f$ ca. $23$ MHz), Integralwert ca. $4.55\cdot 10^9$; ohne $k_1$: $0.93\cdot 10^8$ ($f$ ca. $23$ MHz) bzw. $1.41\cdot 10^9$.<br>
 +
 +
==Quellenverzeichnis==
  
 
{{LntAppletLink|daempfung}}
 
{{LntAppletLink|daempfung}}

Revision as of 17:28, 1 March 2018

Open Applet in a new tab

Programmbeschreibung


Theoretischer Hintergrund


Betragsfrequenzgang und Dämpfungsfunktion

Es besteht folgender Zusammenhang zwischen dem Betragsfrequenzgang und der Dämpfungsfunktion:

$$\left | H_{\rm K}(f)\right |=10^{-a_\text{K}(f)/20} = {\rm e}^{-a_\text{K, Np}(f)}.$$
  • Der Index „K” soll deutlich machen, dass das betrachtete LZI–System ein Kaabel ist.
  • Bei der ersten Berechnungsvorschrift ist die Dämpfungsfunktion $a_\text{K}(f)$ in $\rm dB$ (Dezibel)einzusetzen.
  • Bei der zweiten Berechnungsvorschrift ist die Dämpfungsfunktion $a_\text{K, Np}(f)$ in $\rm Np$ (Neper) einzusetzen.
  • Es gelten folgende Umrechnungen $\rm 1 \ dB = 0.05 \cdot \ln (10) \ Np= 0.1151 \ Np$ bzw. $\rm 1 \ Np = 20 \cdot \lg (e) \ dB= 8.6859 \ dB$.
  • In diesem Applet werden ausschließlich die dB–Werte verwendet.

Dämpfungsfunktion eines Koaxialkabels

Die Dämpfungsfunktion eines Koaxialkabels wird in [Wel77][1] wie folgt angegeben:

  • Die Dämpfungsfunktion eines Koaxialkabels wird meist in folgender Form angegeben:

$$a_k(f)=(a_0+a_1\cdot f+a_2\cdot f^{\frac{1}{2}})\cdot l \hspace{0.5cm}\Rightarrow \hspace{0.5cm} \text{Betragsfrequenzgang} \left| H_K(f)\right|=10^{-a_K(f)/20}.$$

  • $a_K(f)$ ist direkt proportional zur Leitungslänge $l$.
  • Der Koeffizient $a_0$ beschreibt die Ohmschen Längenverluste.
  • Der Koeffizient $a_1$ beschreibt die Querverluste.
  • Der Koeffizient $a_2$ beschreibt den Skineffekt; dieser ist sehr dominant.
  • In der Literatur findet man folgende Dämpfungsfunktion einer Zweidrahtleitung:

$$a_k(f)=(k_1+k_2\cdot f^{k_3})\cdot l \hspace{0.5cm}\Rightarrow \hspace{0.5cm} \text{empirische Formel von Pollakowski & Wellhausen.}$$

  • Umrechnung der $k$-Parameter in die $a$-Parameter nach dem Kriterium, dass der mittlere quadratische Fehler innerhalb der Bandbreite $B$ minimal sein soll:

$$a_0=k_1 \text{(trivial)}, \quad a_1=15\cdot B^{k_3-1}\cdot \frac{k_2\cdot (k_3-0.5)}{(k_3+1.5)\cdot (k_3+2)}, \quad a_2=10\cdot B^{k_3-0.5}\cdot \frac{k_2\cdot (1-k_3)}{(k_3+1.5)\cdot (k_3+2)}.$$

  • Kontrolle: $k_3=1 \Rightarrow a_1=k_2;\ a_2=0 \quad k_3=0.5 \Rightarrow a_1=0;\ a_2=k_2.$
  • Der Gesamtfrequenzgang $H(f)$ ist ein Cosinus-Rolloff-Tiefpass mit Rolloff-Faktor $r$, wobei stets $B=f_2$ und $r=\frac{f_2-f_1}{f_2+f_1}$ gelten soll.
  • Ohne Berücksichtigung des Sendespektrums gilt $H(f)=H_K(f)\cdot H_E(f) \Rightarrow H_E(f)=\frac{H(f)}{H_K(f)}$.
  • Der angegebene Integralwert $=\int_{-\infty}^{+\infty} \left| H_E(f)\right|^2 \hspace{0.15cm} {\rm d}f$ ist ein Maß für die Rauschleistung des Systems, wenn der Kanal $H_K(f)$ durch das Empfangsfilter $H_E(f)$ in weiten Bereichen bis $f_1$ vollständig entzerrt wird.


  • idealer Kanal ($a_0=a_1=a_2=0$ dB), $B=20$ MHz, $r=0$: Integralwert = $40$ MHz.
  • schwach verzerrender Kanal ($a_2=5$ dB), $B=20$ MHz, $r=0.5$: Integralwert $\approx 505$ MHz.

Vorgeschlagene Parametersätze

(1)   Nur blauer Parametersatz, $l=1$ km, $B=30$ MHz, $r=0$, $a_0=20$, $a_1=0$, $a_2=0$:
Konstante Werte $a_K=20$ dB und $\left| H_K(f)\right|=0.1$. Nur Ohmsche Verluste werden berücksichtigt.
(2) Parameter wie (1), aber zusätzlich $a_1=1$ dB/(km · MHz):
Linearer Anstieg von $a_K(f)$ zwischen $20$ dB und $50$ dB, $\left| H_K(f)\right|$ fällt beidseitig exponentiell ab.
(3)   Parameter wie (1), aber $a_0=0$, $a_1=0$, $a_2=1$ dB/(km · MHz1/2).
$a_K(f)$ und $\left| H_K(f)\right|$ werden ausschließlich durch den Skineffekt bestimmt. $a_K(f)$ ist proportional zu $f^{1/2}$.
(4)   Parameter wie (1), aber nun mit der Einstellung „Koaxialkabel $2.6/9.5$ mm“ (Normalkoaxialkabel):
Es überwiegt der Skineffekt; $a_k$ ($f=30$ MHz)$=13.05$ dB; ohne $a_0$: $13.04$ dB, ohne $a_1=12.92$ dB.
(5)   Parameter wie (1), aber nun mit der Einstellung „Koaxialkabel $1.2/4.4$ mm“ (Kleinkoaxialkabel):
Wieder überwiegt der Skineffekt; $a_k$ ($f=30$ MHz)$=28.66$ dB; ohne $a_0$: $28.59$ dB, ohne $a_1=28.48$ dB.
(6)   Nur roter Parametersatz, $l=1 km$, $b=30$ MHz, $r=0$, Einstellung „Zweidrahtleitung $0.4$ mm“.
Skineffekt ist auch hier dominant; $a_k$ ($f=30$ MHz)$=111.4$ dB; ohne $k_1$: $106.3$ dB.
(7)   Parameter wie (6), aber nun Halbierung der Kabellänge ($l=0.5$ km):
Auch die Dämpfungswerte werden halbiert: $a_k$ ($f=30$ MHz)$=55.7$ dB; ohne $k_1$: $53.2$ dB.
(8)   Parameter wie (7), dazu im blauen Parametersatz die umgerechneten Werte der Zweidrahtleitung:
Sehr gute Approximation der $k$-Parameter durch die $a$-Parameter; Abweichung < $0.4$ dB.
(9)   Parameter wie (8), aber nun Approximation auf die Bandbreite $B=20$ MHz:
Noch bessere Approximation der $k$-Parameter durch die $a$-Parameter; Abweichung < $0.15$ dB.
(10)   Nur blauer Parametersatz, $l=1$ km, $B=30$ MHz, $r=0$, $a_0=a_1=a_2=0$; unten Darstellung $\left| H_K(f)\right|^2$:
Im gesamten Bereich ist $\left| H_K(f)\right|^2=1$; der Integralwert ist somit $2B=60$ (in MHz).
(11)   Parameter wie (10), aber nun mit Einstellung „Koaxialkabel $2.6/9.5$ mm“ (Normalkoaxialkabel):
$\left| H_K(f)\right|^2$ ist bei $f=1$ etwa $1$ und steigt zu den Rändern bis ca. $20$. Der Integralwert ist ca. $550$.
(12)   Parameter wie (11), aber nun mit der deutlich größeren Kabellänge $l=5$ km:
Deutliche Verstärkung des Effekts; Anstieg bis ca. $3.35\cdot 10^6$ am Rand und Integralwert $2.5\cdot 10^7$.
(13)   Parameter wie (12), aber nun mit Rolloff-Faktor $r=0.5$:
Deutliche Abschwächung des Effekts; Anstieg bis ca. $5.25\cdot 10^4$ ($f$ ca. $20$ MHz), Integralwert ca. $1.07\cdot 10^6$.
(14)   Parameter wie (13), aber ohne Berücksichtigung der Ohmschen Verluste ($a_0=0$):
Nahezu gleichbleibendes Ergebnis; Anstieg bis ca. $5.15\cdot 10^4$ ($f$ ca. $20$ MHz), Integralwert ca. $1.05\cdot 10^6$.
(15)   Parameter wie (14), aber auch ohne Berücksichtigung der Querverluste ($a_1=0$):
Ebenfalls kein großer Unterschied; Anstieg bis ca. $4.74\cdot 10^4$ ($f$ ca. $20$ MHz), Integralwert ca. $0.97\cdot 10^6$.
(16)   Nur roter Parametersatz, $l=1$ km, $B=30$ MHz, $r=0.5$, Einstellung „Zweidrahtleitung $0.4$ mm“:
Anstieg bis ca. $3\cdot 10^8$ ($f$ ca. $23$ MHz), Integralwert ca. $4.55\cdot 10^9$; ohne $k_1$: $0.93\cdot 10^8$ ($f$ ca. $23$ MHz) bzw. $1.41\cdot 10^9$.

Quellenverzeichnis

Open Applet in a new tab

  1. Wellhausen, H. W.: Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren. Frequenz 31, S. 23-28, 1977.