Difference between revisions of "Aufgaben:Exercise 4.1Z: Other Basis Functions"
Line 24: | Line 24: | ||
===Fragebogen=== | ===Fragebogen=== | ||
<quiz display=simple> | <quiz display=simple> | ||
+ | {In Aufgabe A4.1 hat das Gram–Schmidt–Verfahren zu $N = 3$ Basisfunktionen geführt. Wieviele Basisfunktionen benötigt man hier? | ||
+ | |type="{}"} | ||
+ | $N$ = { 3 3% } | ||
+ | |||
+ | {Geben Sie die 2–Norm aller Signale an: | ||
+ | |type="{}"} | ||
+ | $||s_1(t)||$ = { 1 3% } $\ 10^{\rm –3} \ \rm (Ws)^{\rm 0.5} $ | ||
+ | |||
{Multiple-Choice | {Multiple-Choice | ||
|type="[]"} | |type="[]"} |
Revision as of 09:35, 4 November 2017
Diese Aufgabe verfolgt das genau gleiche Ziel wie die Aufgabe A4.1. Für $M = 4$ energiebegrenzte Signale $s_i(t)$ mit $i = 1, \ ... \ , 4$ sollen die $N$ erforderlichen orthonormalen Basisfunktionen $\varphi_{\it j}(t)$ gefunden werden, die folgende Bedingung erfüllen müssen.
- $$< \hspace{-0.1cm} \varphi_j(t), \hspace{0.1cm}\varphi_k(t) \hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \int_{-\infty}^{+\infty}\varphi_j(t) \cdot \varphi_k(t)\, {\rm d} t =\\ \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm \delta}_{jk} = \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} j = k \\ j \ne k \\ \end{array} \hspace{0.05cm}.$$
Mit $M$ Sendesignale $s_i(t)$ können bereits weniger Basisfunktionen $\varphi_{\it j}(t)$ ausreichen, nämlich $N$. Allgemein gilt also $N ≤ M$.
Es handelt sich hier um die genau gleichen energiebegrenzten Signale $s_i(t)$ wie in der Aufgabe A4.1. Der Unterschied ist die unterschiedliche Reihenfolge der Signale $s_i(t)$. Diese sind in dieser Aufgabe so sortiert, dass die Basisfunktionen auch ohne Anwendung des umständlicheren Gram–Schmidt–Verfahrens gefunden werden können.
Hinweise:
- Die Aufgabe bezieht sich auf das Kapitel Signale, Basisfunktionen und Vektorräume.
- Verwenden Sie für numerische Berechnungen:
- $$A = 1 \sqrt{\rm W} , \hspace{0.2cm} T = 1\,{\rm \mu s} \hspace{0.05cm}. $$
Fragebogen
Musterlösung