Difference between revisions of "Aufgaben:Exercise 4.08Z: Error Probability with Three Symbols"
From LNTwww
Line 49: | Line 49: | ||
|type="[]"} | |type="[]"} | ||
- Alle Nachrichten $m_i$ werden in gleicher Weise verfälscht. | - Alle Nachrichten $m_i$ werden in gleicher Weise verfälscht. | ||
− | + Die bedingte Fehlerwahrscheinlichkeit ${\rm Pr(Fehler \ | \ \it m_0} = 1/64$. | + | + Die bedingte Fehlerwahrscheinlichkeit ${\rm Pr(Fehler \ | \ \it m_0)} = 1/64$. |
− | - Die bedingte Fehlerwahrscheinlichkeit ${\rm Pr(Fehler \ | \ \it m_1} = 0$. | + | - Die bedingte Fehlerwahrscheinlichkeit ${\rm Pr(Fehler \ | \ \it m_1)} = 0$. |
− | + Die bedingte Fehlerwahrscheinlichkeit ${\rm Pr(Fehler \ | \ \it m_2} = 0$. | + | + Die bedingte Fehlerwahrscheinlichkeit ${\rm Pr(Fehler \ | \ \it m_2)} = 0$. |
{Welche Fehlerwahrscheinlichkeit ergibt sich mit ${\rm Pr}(m_0) = {\rm Pr}(m_1) = {\rm Pr}(m_2) = 1/3$? | {Welche Fehlerwahrscheinlichkeit ergibt sich mit ${\rm Pr}(m_0) = {\rm Pr}(m_1) = {\rm Pr}(m_2) = 1/3$? | ||
|type="{}"} | |type="{}"} | ||
− | $A = 1 \ | + | $A = 1; \ {\rm alle 1/3} \text{:} \hspace{0.2cm} p_{\rm S}$ = { 1.04 3% } $\ \cdot 10^{\rm –2}$ |
{Welche Fehlerwahrscheinlichkeit ergibt sich mit ${\rm Pr}(m_0) = {\rm Pr}(m_1) = {\rm Pr}(m_2) = 1/3$? | {Welche Fehlerwahrscheinlichkeit ergibt sich mit ${\rm Pr}(m_0) = {\rm Pr}(m_1) = {\rm Pr}(m_2) = 1/3$? |
Revision as of 18:31, 7 November 2017
Die Grafik zeigt die genau gleiche Signalraumkonstellation wie in der Aufgabe A4.8:
- die $M = 3$ möglichen Sendesignale, nämlich
- $$\boldsymbol{ s }_0 = (-1, \hspace{0.1cm}1)\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ s }_1 = (1, \hspace{0.1cm}2)\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ s }_2 = (2, \hspace{0.1cm}-1)\hspace{0.05cm}.$$
- die $M = 3$ Entscheidungsgrenzen
- $$G_{01}: y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1.5 - 2 \cdot x\hspace{0.05cm},$$
- $$ G_{02}: y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} -0.75 +1.5 \cdot x\hspace{0.05cm},$$
- $$ G_{12}: y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} x/3\hspace{0.05cm}.$$
Die beiden Achsen des 2D–Signalraums sind hier vereinfachend mit $x$ und $y$ bezeichnet; eigentlich müsste hierfür $\varphi_1(t)/E^{\rm 1/2}$ bzw. $\varphi_2(t)/E^{\rm 1/2}$ geschrieben werden.
Diese Entscheidungsgrenzen sind optimal unter den Voraussetzungen
- gleichwahrscheinliche Symbolwahrscheinlichkeiten
- zirkulär–symmetrische WDF des Rauschens (z.B. AWGN).
In dieser Aufgabe betrachten wir dagegen für die Rausch–WDF eine zweidimensionale Gleichverteilung:
- $$\boldsymbol{ p }_{\boldsymbol{ n }} (x,\hspace{0.15cm} y) = \left\{ \begin{array}{c} K\\ 0 \end{array} \right.\quad \begin{array}{*{1}c}{\rm f\ddot{u}r} \hspace{0.15cm}|x| <A, \hspace{0.15cm} |y| <A \hspace{0.05cm}, \\ {\rm sonst} \hspace{0.05cm}.\\ \end{array}$$
Ein solches amplitudenbegrenztes Rauschen ist zwar ohne jede praktische Bedeutung. Es ermöglicht jedoch eine Fehlerwahrscheinlichkeitsberechnung ohne umfangreiche Integrale, aus der das Prinzip der Vorgehensweise erkennbar wird.
Hinweis:
- Die Aufgabe gehört zum Themenkomplex des Kapitels Approximation der Fehlerwahrscheinlichkeit.
Fragebogen
Musterlösung
(1)
(2)
(3)
(4)
(5)