Difference between revisions of "Aufgaben:Exercise 4.09Z: Laplace Distributed Noise"
From LNTwww
Line 44: | Line 44: | ||
{Wie groß ist die Wahrscheinlichkeit, dass $n_1$ und $n_2$ jeweils größer als $1$ sind? | {Wie groß ist die Wahrscheinlichkeit, dass $n_1$ und $n_2$ jeweils größer als $1$ sind? | ||
|type="{}"} | |type="{}"} | ||
− | $a = 1 \text{:} \hspace{0.2cm} {\rm Pr}[(n_1 > 1) ∩ (n_2 > 1)]$ = { 0. | + | $a = 1 \text{:} \hspace{0.2cm} {\rm Pr}[(n_1 > 1) ∩ (n_2 > 1)]$ = { 0.034 3% } |
{Wie groß ist die Wahrscheinlichkeit, dass die Summe $n_1 + n_2 > 2$ ist? | {Wie groß ist die Wahrscheinlichkeit, dass die Summe $n_1 + n_2 > 2$ ist? |
Revision as of 09:48, 8 November 2017
Wir betrachten zweidimensionales Rauschen $\boldsymbol{n} = (n_1, n_2)$.
Die beiden Rauschvariablen sind „independent and identically distributed”, abgekürzt i.i.d., und besitzen beide jeweils eine Laplace–Wahrscheinlichkeitsdichte:
- $$p_{n_1}(x) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} K \cdot {\rm e}^{- a \hspace{0.03cm}\cdot \hspace{0.03cm} |x|} \hspace{0.05cm},$$
- $$ p_{n_2}(y) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} K \cdot {\rm e}^{- a \hspace{0.03cm}\cdot \hspace{0.03cm} |y|} \hspace{0.05cm}. $$
Die 2D–Wahrscheinlichkeitsdichtefunktion $p_{\it \boldsymbol{n}}(x, y)$ ist in der Grafik dargestellt. Zur Vereinfachung der Schreibweise werden hier die Realisierungen von $n_1$ und $n_2$ mit $x$ und $y$ bezeichnet.
Hinweise:
- Die Aufgabe bezieht sich auf das Kapitel Approximation der Fehlerwahrscheinlichkeit.
- Beachten Sie bitte, dass in Teilaufgabe (6) das sich ergebende Integral aufgrund der Betragsbildung in mehrere Teilintegrale aufgespalten werden muss.
- Weiterhin gilt:
- $$\int_{0}^{\infty} x^2 \cdot {\rm e}^{-a \hspace{0.03cm}\cdot \hspace{0.03cm} x} \,{\rm d} x = {2}/{a^3} \hspace{0.05cm}.$$
Fragebogen
Musterlösung
(1)
(2)
(3)
(4)
(5)