Difference between revisions of "Aufgaben:Exercise 3.12: Path Weighting Function"
From LNTwww
Line 5: | Line 5: | ||
* Rate $R = 1/2$, | * Rate $R = 1/2$, | ||
* Gedächtnis $m = 1$, | * Gedächtnis $m = 1$, | ||
− | * Übertragungsfunktionsmatrix $\mathbf{G}(D) = (1, \ ,D)$ | + | * Übertragungsfunktionsmatrix $\mathbf{G}(D) = (1, \, D)$ |
Revision as of 12:35, 5 December 2017
In Aufgabe A3.6 wurde das Zustandsübergangsdiagramm für den gezeichneten Faltungscoder mit den Eigenschaften
- Rate $R = 1/2$,
- Gedächtnis $m = 1$,
- Übertragungsfunktionsmatrix $\mathbf{G}(D) = (1, \, D)$
ermittelt, das ebenfalls rechts dargestellt ist.
Es soll nun aus dem Zustandsübergangsdiagramm
- die Pfadgewichtsfunktion $T(X)$, und
- die erweiterte Pfadgewichtsfunktion $T_{\rm enh}(X, \, U)$
bestimmt werden, wobei $X$ und $U$ Dummy–Variablen sind.
Die Vorgehensweise ist im Theorieteil zu diesem Kapitel eingehend erläutert. Schließlich ist aus $T(X)$ noch die freie Distanz $d_{\rm F}$ zu bestimmen.
Hinweise:
- Die Aufgabe gehört zum Themengebiet des Kapitels Distanzeigenschaften und Fehlerwahrscheinlichkeitsschranken
- Berücksichtigen Sie bei der Lösung die Reihenentwicklung
- $$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \hspace{0.05cm}...\hspace{0.1cm}.$$
Fragebogen
Musterlösung
(1)
(2)
(3)
(4)
(5)