Difference between revisions of "Aufgaben:Exercise 1.4: Maximum Likelihood Decision"
m (Guenter verschob die Seite 1.4: Maximum–Likelihood–Entscheidung nach 1.4 Maximum–Likelihood–Entscheidung) |
|
(No difference)
|
Revision as of 15:34, 11 December 2017
Wir betrachten das digitale Übertragungssystem entsprechend der Grafik. Berücksichtigt sind dabei:
- ein systematischer (5, 2)–Blockcode $\mathcal{C}$ mit den Codeworten
- $$\underline{x}_{0} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (0, 0, 0, 0, 0) \hspace{0.05cm},$$ $$\underline{x}_{1} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (0, 1, 0, 1, 0) \hspace{0.05cm},$$ $$\underline{x}_{2} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (1, 0, 1, 0, 1) \hspace{0.05cm},$$ $$\underline{x}_{3} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (1, 1, 1, 1, 1) \hspace{0.05cm};$$
- ein digitales (binäres) Kanalmodell, das den Vektor $\underline{x} \in {\rm GF} (2^{5})$ in den Vektor $\underline{y} \in {\rm GF} (2^{5})$ verfälscht;
- ein Maximum–Likelihood–Decoder mit der Entscheidungsregel
- $$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm}|\hspace{0.05cm} \underline{y} ) = {\rm arg} \min_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i}).$$
In der Gleichung bezeichnet $d_{\rm H} (\underline{y}, \ \underline{x_{i}})$ die Hamming–Distanz zwischen Empfangswort $\underline{y}$ und dem (möglicherweise) gesendeten Codewort $\underline{x_{i}}$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Kanalmodelle und Entscheiderstrukturen.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- $$d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_0) = 2\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_1) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_3) = 3\hspace{0.05cm}.$$
Entschieden wird sich für die Folge mit der geringsten Hamming–Distanz ⇒ Antwort 3.
(2) Für $\underline{y} = (0, 0, 0, 1, 0)$ sind Antwort 1und Antwort 2 richtig, wie die folgende Rechnung zeigt:
- $$d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_0) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_1) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_3) = 4\hspace{0.05cm}.$$
(3) Entsprechend der Hamming–Distanz wäre eine Entscheidung zugunsten von $x_{2}$ genau so möglich wie für $x_{3}$, wenn der Vektor $\underline{y} = (1, 0, 1, 1, 1)$ empfangen wird:
- $$d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_0) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_1) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_3) = 1\hspace{0.05cm}.$$
Der Empfangsvektor y unterscheidet sich von $x_{2}$ bezüglich des vierten Bits und von $x_{3}$ im zweiten Bit. Da das vierte Bit unsicherer ist als das zweite, wird er sich für $x_{2}$ entscheiden ⇒ Antwort 3.
(4) Da es sich hier um einen systematischen Code handelt, ist die Entscheidung für $\underline{z} = (1, 0, 1, 0, 1)$ gleichbedeutend mit der Entscheidung $\upsilon_{1} \ \underline{ = 1}, \upsilon_{2} \ \underline{= 0}$. Es ist nicht sicher, dass u = (1, 0) tatsächlich gesendet wurde, aber die Wahrscheinlichkeit ist angesichts des Empfangsvektors $\underline{y} = (1, 0, 1, 1, 1)$ hierfür am größten.