Difference between revisions of "Aufgaben:Exercise 4.10: Turbo Encoder for UMTS and LTE"
From LNTwww
Line 2: | Line 2: | ||
[[File:P_ID3051__KC_A_4_10_v1.png|right|frame|UMTS/LTE–Turbocoder]] | [[File:P_ID3051__KC_A_4_10_v1.png|right|frame|UMTS/LTE–Turbocoder]] | ||
− | Die Mobilfunkstandards [[UMTS]] und [[LTE]] verwenden jeweils einen Turbocode, der weitgehend identisch ist mit dem in Kapitel 4.3 beschriebenen Coder. | + | Die Mobilfunkstandards [[Mobile_Kommunikation/Die_Charakteristika_von_UMTS|UMTS]] und [[Mobile_Kommunikation/Allgemeines_zum_Mobilfunkstandard_LTE|LTE]] verwenden jeweils einen Turbocode, der weitgehend identisch ist mit dem in Kapitel 4.3 beschriebenen Coder. |
* Der $1/n$–Faltungscode ist systematisch, das heißt, dass die Codesequenz $\underline{x}$ die Informationssequenz $\underline{u}$ als Komponente beinhaltet. | * Der $1/n$–Faltungscode ist systematisch, das heißt, dass die Codesequenz $\underline{x}$ die Informationssequenz $\underline{u}$ als Komponente beinhaltet. | ||
* Die Sequenzen $\underline{p}_1$ und $\underline{p}_2$ basieren auf der gleichen Übertragungsfunktion: $G_1(D) = G_2(D) = G(D)$. | * Die Sequenzen $\underline{p}_1$ und $\underline{p}_2$ basieren auf der gleichen Übertragungsfunktion: $G_1(D) = G_2(D) = G(D)$. |
Revision as of 09:17, 12 December 2017
Die Mobilfunkstandards UMTS und LTE verwenden jeweils einen Turbocode, der weitgehend identisch ist mit dem in Kapitel 4.3 beschriebenen Coder.
- Der $1/n$–Faltungscode ist systematisch, das heißt, dass die Codesequenz $\underline{x}$ die Informationssequenz $\underline{u}$ als Komponente beinhaltet.
- Die Sequenzen $\underline{p}_1$ und $\underline{p}_2$ basieren auf der gleichen Übertragungsfunktion: $G_1(D) = G_2(D) = G(D)$.
- Die Paritysequenzen $\underline{p}_1$ und $\underline{p}_2$ verwenden unterschiedliche Eingangssequenzen $\underline{u}$ bzw. $\underline{u}_{\pi}$. Hierbei kennzeichnet ${\rm \Pi}$ den Interleaver, bei UMTS und LTE meist ein $S$–Random–Interleaver.
Der wesentliche Unterschied gegenüber der bisherigen Beschreibung im Theorieteil ergibt sich durch eine andere Übertragungsfunktion $G(D)$, die durch die folgende rekursive Filterstruktur gegeben ist:
Hinweise:
- Die Aufgabe gehört zum Themengebiet des Kapitels ....
- Erwartet werden Kenntnisse über
- die algebraische und polynomische Beschreibung von Faltungscodes ⇒ Kapitel 3.2,
- die Zustandsbeschreibung mit Zustands– und Trellisdiagramm ⇒ Kapitel 3.3.
- Weitere Hinweise zur Vorgehensweise finden Sie in Aufgabe A4.8 und Aufgabe A4.9.
- Die Informationssequenz $\underline{u}$ wird zur einfacheren Beschreibung in den Teilaufgaben teilweise durch deren $D$–Transformierte angegeben. Beispielsweise gilt:
- $$\underline{u}= (\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm}\hspace{0.05cm} ...\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad U(D) = D+ D^2\hspace{0.05cm},$$
- $$\underline{u}= (\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm}\hspace{0.05cm} ...\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad U(D) = D+ D^8\hspace{0.05cm}.$$
Fragebogen
Musterlösung
(1)
(2)
(3)
(4)
(5)