Difference between revisions of "Aufgaben:Exercise 2.5Z: Square Wave"

From LNTwww
m (Guenter verschob die Seite 2.5Z Rechtecksignale nach Aufgabe 2.5Z: Rechtecksignale)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID323__Sig_Z_2_5.png|right|Fourierreihe: Rechtecksignale]]
+
[[File:P_ID323__Sig_Z_2_5.png|right|frame|Verschiedene Rechtecksignale]]
 
Das mit der Zeit $T_0$ periodische Signal $x(t)$ wird durch den einzigen Parameter $\Delta t$ beschrieben; die Amplitude der Rechteckimpulse sei jeweils $1$. Da $x(t)$ gerade ist, sind alle Sinuskoeffizienten $B_n = 0$.
 
Das mit der Zeit $T_0$ periodische Signal $x(t)$ wird durch den einzigen Parameter $\Delta t$ beschrieben; die Amplitude der Rechteckimpulse sei jeweils $1$. Da $x(t)$ gerade ist, sind alle Sinuskoeffizienten $B_n = 0$.
  
 
Der Gleichsignalkoeffizient ist $A_0 = \Delta t/T_0$ und für die Cosinuskoeffizienten gilt:
 
Der Gleichsignalkoeffizient ist $A_0 = \Delta t/T_0$ und für die Cosinuskoeffizienten gilt:
 
:$$A_n=\frac{2}{n\pi}\cdot \sin(n\pi \Delta t/T_0).$$
 
:$$A_n=\frac{2}{n\pi}\cdot \sin(n\pi \Delta t/T_0).$$
In den Teilaufgaben 1) und 2) wird das Signal $x(t)$ für die zwei Parameterwerte $\Delta t/T_0 = 0.5$ bzw. $\Delta t/T_0 = 0.25$ analysiert. Danach betrachten wir die beiden ebenfalls in der Abbildung dargestellten Signale $y(t)$ und $z(t)$, jeweils mit $\Delta t/T_0 = 0.25$.
+
In den Teilaufgaben (1) und (2) wird das Signal $x(t)$ für die zwei Parameterwerte $\Delta t/T_0 = 0.5$ bzw. $\Delta t/T_0 = 0.25$ analysiert. Danach betrachten wir die beiden ebenfalls in der Abbildung dargestellten Signale $y(t)$ und $z(t)$, jeweils mit $\Delta t/T_0 = 0.25$.
 +
 
 +
 
 +
 
  
 
''Hinweise:''  
 
''Hinweise:''  
 
*Die Aufgabe gehört zum Kapitel [[Signaldarstellung/Fourierreihe|Fourierreihe]].
 
*Die Aufgabe gehört zum Kapitel [[Signaldarstellung/Fourierreihe|Fourierreihe]].
*Eine kompakte Zusammenfassung der Thematik finden Sie in den folgenden Lernvideos [[Zur Berechnung der Fourierkoeffizienten (Dauer 3:50)]] und [[Eigenschaften und Genauigkeit der Fourierreihe]].
+
*Eine kompakte Zusammenfassung der Thematik finden Sie in den beiden Lernvideos  
 +
:[[Zur_Berechnung_der_Fourierkoeffizienten_(Lernvideo)|Zur Berechnung der Fourierkoeffizienten]] sowie [[Eigenschaften_der_Fourierreihendarstellung_(Lernvideo)|Eigenschaften der Fourierreihendarstellung]].
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 +
 +
  
  
Line 38: Line 44:
 
{Wie groß ist der Gleichanteil des Signals ${y(t)}$?
 
{Wie groß ist der Gleichanteil des Signals ${y(t)}$?
 
|type="{}"}
 
|type="{}"}
Signal $y(t)$:  $A_0=$ { 0.75 3% }
+
$A_0 \ = \ $ { 0.75 3% }
  
  
 
{Welcher Zusammenhang besteht zwischen den Signalen $x(t)$ und ${y(t)}$? Geben Sie mit Hilfe dieser Überlegungen die Fourierkoeffizienten von ${y(t)}$ an. Wie groß sind die Koeffizienten $A_1$ und $A_2$ dieses Signals?
 
{Welcher Zusammenhang besteht zwischen den Signalen $x(t)$ und ${y(t)}$? Geben Sie mit Hilfe dieser Überlegungen die Fourierkoeffizienten von ${y(t)}$ an. Wie groß sind die Koeffizienten $A_1$ und $A_2$ dieses Signals?
 
|type="{}"}
 
|type="{}"}
Signal $y(t)$:  $A_1=$ { -0.46--0.44 }
+
$A_1\ = \ $ { -0.46--0.44 }
$A_2 = $ { -0.325--0.315  }
+
$A_2 \ = \ $ { -0.325--0.315  }
  
  
 
{Welcher Zusammenhang besteht zwischen den Signalen ${y(t)}$ und ${z(t)}$? Wie groß sind die Koeffizienten $A_1$ und $A_2$ des Signals ${z(t)}$? Überprüfen Sie das Ergebnis anhand der angebenen Koeffizienten des Signals $x(t)$.
 
{Welcher Zusammenhang besteht zwischen den Signalen ${y(t)}$ und ${z(t)}$? Wie groß sind die Koeffizienten $A_1$ und $A_2$ des Signals ${z(t)}$? Überprüfen Sie das Ergebnis anhand der angebenen Koeffizienten des Signals $x(t)$.
 
|type="{}"}
 
|type="{}"}
Signal $z(t)$:  $A_1 =$ { 0.45 3% }
+
$A_1 \ = \ $ { 0.45 3% }
$A_2 =$ { -0.325--0.315 }
+
$A_2 \ = \ $ { -0.325--0.315 }
  
  
Line 58: Line 64:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  Richtig sind die <u>Aussagen 1, 3 und 5</u>.:
+
'''(1)''&nbsp; Richtig sind die <u>Aussagen 1, 3 und 5</u>.:
 
*Die Spektralfunktion beinhaltet eine Diracfunktion bei $f = 0$ mit dem Gewicht $0.5$ (Gleichanteil) sowie weitere Spektrallinien bei ungeradzahligen Vielfachen ($n = \pm1, \pm3, \pm5,...$) von $f_0$.  
 
*Die Spektralfunktion beinhaltet eine Diracfunktion bei $f = 0$ mit dem Gewicht $0.5$ (Gleichanteil) sowie weitere Spektrallinien bei ungeradzahligen Vielfachen ($n = \pm1, \pm3, \pm5,...$) von $f_0$.  
 
*Die Gewichte bei $\pm f_0$ sind jeweils $A_1/2 = 1/\pi = 0.318$.  
 
*Die Gewichte bei $\pm f_0$ sind jeweils $A_1/2 = 1/\pi = 0.318$.  
  
'''2.'''  Richtig sind somit die <u>Aussagen 1, 2 und 4</u>:
+
'''(2)''&nbsp; Richtig sind die <u>Aussagen 1, 2 und 4</u>:
 
*Bei allen ungeradzahligen Vielfachen der Grundfrequenz existieren Spektrallinien, zusätzlich noch bei den $2–{\rm fachen}$, $6–{\rm fachen}$ und $10–{\rm fachen}$.  
 
*Bei allen ungeradzahligen Vielfachen der Grundfrequenz existieren Spektrallinien, zusätzlich noch bei den $2–{\rm fachen}$, $6–{\rm fachen}$ und $10–{\rm fachen}$.  
 
*Beispielsweise gilt $A_1 = 1/\pi = 0.450$. ????? Die Spektrallinie bei $2f_0$ hat somit das Gewicht $A_2/2 = 1/(2\pi) = 0.159$.  
 
*Beispielsweise gilt $A_1 = 1/\pi = 0.450$. ????? Die Spektrallinie bei $2f_0$ hat somit das Gewicht $A_2/2 = 1/(2\pi) = 0.159$.  
Line 68: Line 74:
 
*Für $n = 4$, $n = 8$, usw. sind dagegen die Koeffizienten $A_n = 0$, da für die Sinusfunktion gilt: $\sin(\pi) = \sin(2\pi) = ... = 0$.  
 
*Für $n = 4$, $n = 8$, usw. sind dagegen die Koeffizienten $A_n = 0$, da für die Sinusfunktion gilt: $\sin(\pi) = \sin(2\pi) = ... = 0$.  
  
'''3.'''  Aus der grafischen Darstellung des Signals ${y(t)}$ wird deutlich, dass $A_0 = 0.75$ gelten muss. Zum gleichen Ergebnis kommt man über die Beziehung:
+
'''(3)''&nbsp; Aus der grafischen Darstellung des Signals ${y(t)}$ wird deutlich, dass $A_0 = 0.75$ gelten muss. Zum gleichen Ergebnis kommt man über die Beziehung:
 
:$$A_0^{(y)}=1-A_0^{(x)}=1-0.25\hspace{0.15cm}\underline{=0.75}.$$
 
:$$A_0^{(y)}=1-A_0^{(x)}=1-0.25\hspace{0.15cm}\underline{=0.75}.$$
  
'''4.'''  Es gilt ${y(t)} = 1 – x(t)$. Für $n \neq 0$ ergeben sich somit die gleichen Fourierkoeffizienten wie für das Signal $x(t)$, jedoch mit negativen Vorzeichen. Inbesondere gilt:
+
'''(4)''&nbsp; Es gilt ${y(t)} = 1 – x(t)$. Für $n \neq 0$ ergeben sich somit die gleichen Fourierkoeffizienten wie für das Signal $x(t)$, jedoch mit negativen Vorzeichen. Inbesondere gilt:
 
:$$A_1^{(y)} = -A_1^{(x)}=-{2}/{\pi} \cdot \sin({\pi}/{4})= -{\sqrt2}/{\pi}\hspace{0.15cm}\underline{\approx -0.450},$$
 
:$$A_1^{(y)} = -A_1^{(x)}=-{2}/{\pi} \cdot \sin({\pi}/{4})= -{\sqrt2}/{\pi}\hspace{0.15cm}\underline{\approx -0.450},$$
 
:$$A_2^{(y)} = -A_2^{(x)}=-{1}/{\pi}\hspace{0.15cm}\underline{ \approx - 0.318}.$$
 
:$$A_2^{(y)} = -A_2^{(x)}=-{1}/{\pi}\hspace{0.15cm}\underline{ \approx - 0.318}.$$
  
'''5.'''  Es gilt ${z(t)} = y(t – T_0/2)$. Mit der Fourierreihendarstellung von ${y(t)}$ folgt daraus:
+
'''(5)''&nbsp; Es gilt ${z(t)} = y(t – T_0/2)$. Mit der Fourierreihendarstellung von ${y(t)}$ folgt daraus:
 
:$$z(t)=A_0+A_1^{(y)}\cos(\omega_0(t-\frac{T_0}{2}))+A_2^{(y)}\cos(2\omega_0(t-\frac{T_0}{2}))+A_3^{(y)}\cos(3\omega_0(t-\frac{T_0}{2}))+\ldots$$
 
:$$z(t)=A_0+A_1^{(y)}\cos(\omega_0(t-\frac{T_0}{2}))+A_2^{(y)}\cos(2\omega_0(t-\frac{T_0}{2}))+A_3^{(y)}\cos(3\omega_0(t-\frac{T_0}{2}))+\ldots$$
 
:$$\Rightarrow \quad z(t)=A_0-A_1^{(y)}\cos(\omega_0 t)+A_2^{(y)}\cos(2\omega_0 t)-A_3^{(y)}\cos(3\omega_0 t)+\ldots$$
 
:$$\Rightarrow \quad z(t)=A_0-A_1^{(y)}\cos(\omega_0 t)+A_2^{(y)}\cos(2\omega_0 t)-A_3^{(y)}\cos(3\omega_0 t)+\ldots$$

Revision as of 13:43, 20 December 2017

Verschiedene Rechtecksignale

Das mit der Zeit $T_0$ periodische Signal $x(t)$ wird durch den einzigen Parameter $\Delta t$ beschrieben; die Amplitude der Rechteckimpulse sei jeweils $1$. Da $x(t)$ gerade ist, sind alle Sinuskoeffizienten $B_n = 0$.

Der Gleichsignalkoeffizient ist $A_0 = \Delta t/T_0$ und für die Cosinuskoeffizienten gilt:

$$A_n=\frac{2}{n\pi}\cdot \sin(n\pi \Delta t/T_0).$$

In den Teilaufgaben (1) und (2) wird das Signal $x(t)$ für die zwei Parameterwerte $\Delta t/T_0 = 0.5$ bzw. $\Delta t/T_0 = 0.25$ analysiert. Danach betrachten wir die beiden ebenfalls in der Abbildung dargestellten Signale $y(t)$ und $z(t)$, jeweils mit $\Delta t/T_0 = 0.25$.



Hinweise:

  • Die Aufgabe gehört zum Kapitel Fourierreihe.
  • Eine kompakte Zusammenfassung der Thematik finden Sie in den beiden Lernvideos
Zur Berechnung der Fourierkoeffizienten sowie Eigenschaften der Fourierreihendarstellung.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.



Fragebogen

1

Welche Aussagen gelten für das Signal $x(t)$ mit $\Delta t/T_0 = 0.5$?

Die Spektralfunktion ${X(f)}$ beinhaltet eine Diracfunktion bei $f = 0$ mit dem Gewicht $0.5$.
Die Spektralfunktion ${X(f)}$ beinhaltet Diraclinien bei allen Vielfachen der Grundfrequenz $f_0 = 1/T_0$.
Die Spektralfunktion ${X(f)}$ beinhaltet Diraclinien bei ungeradzahligen Vielfachen der Grundfrequenz $f_0$.
Die Spektrallinie bei $f_0$ hat das Gewicht $2/\pi = 0.636$.
Die Spektrallinie bei $–\hspace{-0.1cm}f_0$ hat das Gewicht $1/\pi = 0.318$.

2

Welche Aussagen gelten für das Signal $x(t)$ mit $\Delta t/T_0 = 0.25$?

Die Spektralfunktion ${X(f)}$ beinhaltet Diraclinien bei allen ungeraden Vielfachen der Grundfrequenz $f_0$.
${X(f)}$ hat Diraclinien bei $\pm2f_0$, $\pm6f_0$, $\pm10f_0$, usw.
${X(f)}$ hat Diraclinien bei $\pm4f_0$, $\pm8f_0$, $\pm12f_0$, usw.
Die Spektrallinie bei $2f_0$ hat das Gewicht $1/(2\pi) = 0.159$.

3

Wie groß ist der Gleichanteil des Signals ${y(t)}$?

$A_0 \ = \ $

4

Welcher Zusammenhang besteht zwischen den Signalen $x(t)$ und ${y(t)}$? Geben Sie mit Hilfe dieser Überlegungen die Fourierkoeffizienten von ${y(t)}$ an. Wie groß sind die Koeffizienten $A_1$ und $A_2$ dieses Signals?

$A_1\ = \ $

$A_2 \ = \ $

5

Welcher Zusammenhang besteht zwischen den Signalen ${y(t)}$ und ${z(t)}$? Wie groß sind die Koeffizienten $A_1$ und $A_2$ des Signals ${z(t)}$? Überprüfen Sie das Ergebnis anhand der angebenen Koeffizienten des Signals $x(t)$.

$A_1 \ = \ $

$A_2 \ = \ $


Musterlösung

'(1)  Richtig sind die Aussagen 1, 3 und 5.:

  • Die Spektralfunktion beinhaltet eine Diracfunktion bei $f = 0$ mit dem Gewicht $0.5$ (Gleichanteil) sowie weitere Spektrallinien bei ungeradzahligen Vielfachen ($n = \pm1, \pm3, \pm5,...$) von $f_0$.
  • Die Gewichte bei $\pm f_0$ sind jeweils $A_1/2 = 1/\pi = 0.318$.

'(2)  Richtig sind die Aussagen 1, 2 und 4:

  • Bei allen ungeradzahligen Vielfachen der Grundfrequenz existieren Spektrallinien, zusätzlich noch bei den $2–{\rm fachen}$, $6–{\rm fachen}$ und $10–{\rm fachen}$.
  • Beispielsweise gilt $A_1 = 1/\pi = 0.450$. ????? Die Spektrallinie bei $2f_0$ hat somit das Gewicht $A_2/2 = 1/(2\pi) = 0.159$.
  • Beispielsweise gilt $A_2 = 1/\pi = 0.318$. Die Spektrallinie bei $2f_0$ hat somit das Gewicht $A_2/2 = 1/(2\pi) = 0.159$.
  • Für $n = 4$, $n = 8$, usw. sind dagegen die Koeffizienten $A_n = 0$, da für die Sinusfunktion gilt: $\sin(\pi) = \sin(2\pi) = ... = 0$.

'(3)  Aus der grafischen Darstellung des Signals ${y(t)}$ wird deutlich, dass $A_0 = 0.75$ gelten muss. Zum gleichen Ergebnis kommt man über die Beziehung:

$$A_0^{(y)}=1-A_0^{(x)}=1-0.25\hspace{0.15cm}\underline{=0.75}.$$

'(4)  Es gilt ${y(t)} = 1 – x(t)$. Für $n \neq 0$ ergeben sich somit die gleichen Fourierkoeffizienten wie für das Signal $x(t)$, jedoch mit negativen Vorzeichen. Inbesondere gilt:

$$A_1^{(y)} = -A_1^{(x)}=-{2}/{\pi} \cdot \sin({\pi}/{4})= -{\sqrt2}/{\pi}\hspace{0.15cm}\underline{\approx -0.450},$$
$$A_2^{(y)} = -A_2^{(x)}=-{1}/{\pi}\hspace{0.15cm}\underline{ \approx - 0.318}.$$

'(5)  Es gilt ${z(t)} = y(t – T_0/2)$. Mit der Fourierreihendarstellung von ${y(t)}$ folgt daraus:

$$z(t)=A_0+A_1^{(y)}\cos(\omega_0(t-\frac{T_0}{2}))+A_2^{(y)}\cos(2\omega_0(t-\frac{T_0}{2}))+A_3^{(y)}\cos(3\omega_0(t-\frac{T_0}{2}))+\ldots$$
$$\Rightarrow \quad z(t)=A_0-A_1^{(y)}\cos(\omega_0 t)+A_2^{(y)}\cos(2\omega_0 t)-A_3^{(y)}\cos(3\omega_0 t)+\ldots$$

Damit erhält man:

$$A_1^{(z)}=-A_1^{(y)}={\sqrt2}/{\pi}\hspace{0.15cm}\underline{=+0.450}, \hspace {0.5cm} A_2^{(z)}=A_2^{(y)}=-{1}/{\pi}\hspace{0.15cm}\underline{=-0.318}.$$

Das gleiche Ergebnis erhält man ausgehend von den gegebenen Koeffizienten mit $\Delta t/T_0 = 0.75$:

$$A_1^{(z)}={2}/{\pi} \cdot \sin({3}/{4}\cdot \pi)={\sqrt2}/{\pi}, \hspace {0.5cm}A_2^{(z)}= {1}/{\pi} \cdot \sin({3}/{2} \cdot \pi) =-{1}/{\pi}.$$