Difference between revisions of "Aufgaben:Exercise 3.4Z: Trapezoid, Rectangle and Triangle"
From LNTwww
m (Guenter verschob die Seite 3.4Z Trapez, Rechteck und Dreieck nach Aufgabe 3.4Z: Trapez, Rechteck und Dreieck) |
|||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID510__Sig_Z_3_4.png|right|Trapezimpuls und die Grenzfälle „Rechteck” und „Dreieck” ]] | + | [[File:P_ID510__Sig_Z_3_4.png|right|frame|Trapezimpuls und die Grenzfälle „Rechteck” und „Dreieck” ]] |
Betrachtet werden drei unterschiedliche Impulsformen. Der Impuls ${x(t)}$ ist trapezförmig. Für $| t | < t_1 = 4 \,\text{ms}$ ist der Zeitverlauf konstant ${A} = 1\, \text{V}$. Danach fällt ${x(t)}$ bis zum Zeitpunkt $t_2 = 6\, \text{ms}$ linear bis auf den Wert $0$ ab. | Betrachtet werden drei unterschiedliche Impulsformen. Der Impuls ${x(t)}$ ist trapezförmig. Für $| t | < t_1 = 4 \,\text{ms}$ ist der Zeitverlauf konstant ${A} = 1\, \text{V}$. Danach fällt ${x(t)}$ bis zum Zeitpunkt $t_2 = 6\, \text{ms}$ linear bis auf den Wert $0$ ab. | ||
Mit den beiden abgeleiteten Systemgrößen, nämlich | Mit den beiden abgeleiteten Systemgrößen, nämlich | ||
− | + | * der [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Reziprozit.C3.A4tsgesetz_von_Zeitdauer_und_Bandbreite|äquivalenten Impulsdauer]] | |
:$$\Delta t = t_1 + t_2$$ | :$$\Delta t = t_1 + t_2$$ | ||
− | + | * und dem so genannten Rolloff-Faktor (im Zeitbereich) | |
:$$r_t = \frac{t_2 - t_1 }{t_2 + t_1 }$$ | :$$r_t = \frac{t_2 - t_1 }{t_2 + t_1 }$$ | ||
lautet die Spektralfunktion des Trapezimpulses: | lautet die Spektralfunktion des Trapezimpulses: | ||
:$$X( f ) = A \cdot \Delta t \cdot {\mathop{\rm si}\nolimits}( {{\rm \pi} \cdot \Delta t \cdot f} ) \cdot \hspace{0.1cm}{\mathop{\rm si}\nolimits}( {{\rm \pi}\cdot \Delta t \cdot r_t \cdot f} ).$$ | :$$X( f ) = A \cdot \Delta t \cdot {\mathop{\rm si}\nolimits}( {{\rm \pi} \cdot \Delta t \cdot f} ) \cdot \hspace{0.1cm}{\mathop{\rm si}\nolimits}( {{\rm \pi}\cdot \Delta t \cdot r_t \cdot f} ).$$ | ||
− | Weiter sind | + | Weiter sind in der Grafik noch der Rechteckimpuls ${r(t)}$ und der Dreieckimpuls ${d(t)}$ dargestellt, die beide als Grenzfälle des Trapezimpulses ${x(t)}$ interpretiert werden können. |
+ | |||
+ | |||
+ | |||
+ | |||
''Hinweise:'' | ''Hinweise:'' | ||
*Die Aufgabe gehört zum Kapitel [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation|Gesetzmäßigkeiten der Fouriertransformation]]. | *Die Aufgabe gehört zum Kapitel [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation|Gesetzmäßigkeiten der Fouriertransformation]]. | ||
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
− | *Sie können Ihre Ergebnisse anhand | + | *Sie können Ihre Ergebnisse anhand der beiden interaktiven Applets [[Applets:Impulse_und_Spektren|Impulse und Spektren]] sowie [[Applets:Frequenzgang_und_Impulsantwort|Frequenzgang und Impulsantwort]] überprüfen. |
− | |||
− | |||
− | |||
Line 31: | Line 32: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Wie groß sind äquivalente Impulsdauer und Rolloff-Faktor von ${x(t)}$? | + | {Wie groß sind die äquivalente Impulsdauer und der Rolloff-Faktor von ${x(t)}$? |
|type="{}"} | |type="{}"} | ||
− | $\Delta t$ | + | $\Delta t \ = \ $ { 10 3% } $\text{ms}$ |
− | $r_t$ | + | $r_t\hspace{0.3cm} = \ $ { 0.2 3% } |
Revision as of 11:30, 16 January 2018
Betrachtet werden drei unterschiedliche Impulsformen. Der Impuls ${x(t)}$ ist trapezförmig. Für $| t | < t_1 = 4 \,\text{ms}$ ist der Zeitverlauf konstant ${A} = 1\, \text{V}$. Danach fällt ${x(t)}$ bis zum Zeitpunkt $t_2 = 6\, \text{ms}$ linear bis auf den Wert $0$ ab.
Mit den beiden abgeleiteten Systemgrößen, nämlich
- $$\Delta t = t_1 + t_2$$
- und dem so genannten Rolloff-Faktor (im Zeitbereich)
- $$r_t = \frac{t_2 - t_1 }{t_2 + t_1 }$$
lautet die Spektralfunktion des Trapezimpulses:
- $$X( f ) = A \cdot \Delta t \cdot {\mathop{\rm si}\nolimits}( {{\rm \pi} \cdot \Delta t \cdot f} ) \cdot \hspace{0.1cm}{\mathop{\rm si}\nolimits}( {{\rm \pi}\cdot \Delta t \cdot r_t \cdot f} ).$$
Weiter sind in der Grafik noch der Rechteckimpuls ${r(t)}$ und der Dreieckimpuls ${d(t)}$ dargestellt, die beide als Grenzfälle des Trapezimpulses ${x(t)}$ interpretiert werden können.
Hinweise:
- Die Aufgabe gehört zum Kapitel Gesetzmäßigkeiten der Fouriertransformation.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Sie können Ihre Ergebnisse anhand der beiden interaktiven Applets Impulse und Spektren sowie Frequenzgang und Impulsantwort überprüfen.
Fragebogen
Musterlösung
1. Die äquivalente Impulsdauer ist $\Delta t = t_1 + t_2 \;\underline{= 10 \,\text{ms}}$ und der Rolloff-Faktor $r_t = 2/10 \;\underline{= 0.2}$.
2. Richtig sind die Lösungsvorschläge 2 und 3:
- Der Spektralwert bei $f = 0$ beträgt $A \cdot \Delta t = 10 \,\text{mV/Hz}$.
- Da ${X(f)}$ reell ist und sowohl positive als auch negative Werte annehmen kann, sind nur die zwei Phasenwerte $0$ und $\pi$ möglich.
- Nullstellen gibt es aufgrund der ersten si-Funktion bei allen Vielfachen von $1/\Delta t = 100\, \text{Hz}$.
- Die zweite si-Funktion führt zu Nulldurchgängen im Abstand $1/(r_t \cdot \Delta t) = 500 \,\text{Hz}$. Diese fallen exakt mit den Nullstellen der ersten si-Funktion zusammen.
3. Alle Lösungsvorschläge sind zutreffend:
- Mit der äquivalenten Impulsdauer $\Delta t = 10 \,\text{ms}$ und dem Rolloff-Faktor $r_t = 0$ erhält man: $R( f ) = A \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ( {{\rm{\pi }} \cdot \Delta t \cdot f} ).$
4. Hier sind die Lösungsvorschläge 1 und 3 zutreffend:
- Beim Dreieckimpuls ist der Rolloff-Faktor $r_t = 1$.
- Die äquivalente Impulsdauer ist ebenfalls $\Delta t = 10 \,\text{ms}$. Daraus folgt $D( f ) = A \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ^2 ( {{\rm{\pi }} \cdot \Delta t \cdot f} ).$
- Da ${D(f)}$ nicht negativ werden kann, ist die Phase $[{\rm arc} \; {D(f)}]$ stets $0$. Der Phasenwert $\pi$ ($180°$) ist also bei der Dreieckform nicht möglich.