Difference between revisions of "Aufgaben:Exercise 5.3Z: Zero-Padding"
m (Guenter verschob die Seite 5.3Z Zero-Padding nach Aufgabe 5.3Z: Zero-Padding) |
|||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID1146__Sig_Z_5_3_neu.png|right| | + | [[File:P_ID1146__Sig_Z_5_3_neu.png|right|frame|MQF–Werte abhängig von $T_{\rm A} /T$ und $N$]] |
− | Wir betrachten die DFT eines Rechteckimpulses $x(t)$ der Höhe $1$ und der Dauer $T$. Damit hat die Spektralfunktion $X(f)$ einen $\sin(f)/f$–förmigen Verlauf. | + | Wir betrachten die DFT eines Rechteckimpulses $x(t)$ der Höhe $A =1$ und der Dauer $T$. Damit hat die Spektralfunktion $X(f)$ einen $\sin(f)/f$–förmigen Verlauf. |
Für diesen Sonderfall soll der Einfluss des DFT–Parameters $N$ analysiert werden, wobei der Stützstellenabstand im Zeitbereich stets $T_{\rm A} = 0.01T$ bzw. $T_{\rm A} = 0.05T$ betragen soll. | Für diesen Sonderfall soll der Einfluss des DFT–Parameters $N$ analysiert werden, wobei der Stützstellenabstand im Zeitbereich stets $T_{\rm A} = 0.01T$ bzw. $T_{\rm A} = 0.05T$ betragen soll. | ||
Line 11: | Line 11: | ||
:$${\rm MQF} = \frac{1}{N}\cdot \sum_{\mu = 0 }^{N-1} | :$${\rm MQF} = \frac{1}{N}\cdot \sum_{\mu = 0 }^{N-1} | ||
\left|X(\mu \cdot f_{\rm A})-\frac{D(\mu)}{f_{\rm A}}\right|^2 \hspace{0.05cm}.$$ | \left|X(\mu \cdot f_{\rm A})-\frac{D(\mu)}{f_{\rm A}}\right|^2 \hspace{0.05cm}.$$ | ||
− | Für $T_A/T = 0.01$ sind somit stets $101$ der DFT–Koeffizienten $d(ν)$ von | + | Für $T_A/T = 0.01$ sind somit stets $101$ der DFT–Koeffizienten $d(ν)$ von Null verschieden. |
:* Davon besitzen $99$ den Wert $1$ und die beiden Randkoeffizienten sind jeweils gleich $0.5$. | :* Davon besitzen $99$ den Wert $1$ und die beiden Randkoeffizienten sind jeweils gleich $0.5$. | ||
− | :* Vergrößert man $N$, so wird das DFT–Koeffizientenfeld mit Nullen aufgefüllt. Man spricht von ''„Zero–Padding”''. | + | :* Vergrößert man $N$, so wird das DFT–Koeffizientenfeld mit Nullen aufgefüllt. |
+ | |||
+ | :*Man spricht dann von ''„Zero–Padding”''. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
''Hinweise:'' | ''Hinweise:'' | ||
*Die Aufgabe gehört zum Kapitel [[Signaldarstellung/Fehlermöglichkeiten_bei_Anwendung_der_DFT|Fehlermöglichkeiten bei Anwendung der DFT]]. | *Die Aufgabe gehört zum Kapitel [[Signaldarstellung/Fehlermöglichkeiten_bei_Anwendung_der_DFT|Fehlermöglichkeiten bei Anwendung der DFT]]. | ||
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
− | *Die Theorie zu diesem Kapitel ist | + | *Die Theorie zu diesem Kapitel ist im Lernvideo [[Fehlermöglichkeiten_bei_Anwendung_der_DFT_(Lernvideo)|Fehlermöglichkeiten bei Anwendung der DFT]] zusammengefasst. |
− | |||
Revision as of 17:07, 31 January 2018
Wir betrachten die DFT eines Rechteckimpulses $x(t)$ der Höhe $A =1$ und der Dauer $T$. Damit hat die Spektralfunktion $X(f)$ einen $\sin(f)/f$–förmigen Verlauf.
Für diesen Sonderfall soll der Einfluss des DFT–Parameters $N$ analysiert werden, wobei der Stützstellenabstand im Zeitbereich stets $T_{\rm A} = 0.01T$ bzw. $T_{\rm A} = 0.05T$ betragen soll.
Nebenstehend sind für unterschiedliche Werte von $N$ die sich ergebenden Werte für den mittleren quadratischen Fehler (MQF) der Stützwerte im Frequenzbereich angegeben:
- $${\rm MQF} = \frac{1}{N}\cdot \sum_{\mu = 0 }^{N-1} \left|X(\mu \cdot f_{\rm A})-\frac{D(\mu)}{f_{\rm A}}\right|^2 \hspace{0.05cm}.$$
Für $T_A/T = 0.01$ sind somit stets $101$ der DFT–Koeffizienten $d(ν)$ von Null verschieden.
- Davon besitzen $99$ den Wert $1$ und die beiden Randkoeffizienten sind jeweils gleich $0.5$.
- Vergrößert man $N$, so wird das DFT–Koeffizientenfeld mit Nullen aufgefüllt.
- Man spricht dann von „Zero–Padding”.
Hinweise:
- Die Aufgabe gehört zum Kapitel Fehlermöglichkeiten bei Anwendung der DFT.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Die Theorie zu diesem Kapitel ist im Lernvideo Fehlermöglichkeiten bei Anwendung der DFT zusammengefasst.
Fragebogen
Musterlösung
2. Aus $T_{\rm A}/T = 0.01$ folgt $f_{\rm P} \cdot T = 100$. Die Stützwerte von $X(f)$ liegen im Bereich $–50 ≤ f \cdot T < 50$. Für den Abstand zweier Abtastwerte im Frequenzbereich gilt $f_{\rm A} = f_{\rm P}/N$. Daraus ergeben sich folgende Ergebnisse:
- $N = 128$: $f_{\rm A} \cdot T \; \underline{\approx 0.781}$,
- $N = 512$: $f_{\rm A} \cdot T \; \underline{\approx 0.196}$.
3. Für $N = 128$ ergibt sich für das Produkt $\text{MQF} \cdot f_{\rm A} \approx 4.7 \cdot 10^{–6}/T$. Für $N = 512$ ist das Produkt etwa um den Faktor 4 kleiner. Das heißt:
- Durch „Zero–Padding” wird keine größere DFT-Genauigkeit erzielt, dafür aber eine feinere „Auflösung” des Frequenzbereichs.
- Das Produkt $\text{MQF} \cdot f_{\rm A}$ berücksichtigt diese Tatsache; es sollte stets möglichst klein sein. Richtig ist die erste Aussage.
4. Wegen $T_{\rm A} \cdot f_{\rm A} \cdot N = 1$ ergibt sich bei konstantem $N$ immer dann ein kleinerer $f_{\rm A}$–Wert, wenn man $T_{\rm A}$ vergrößert.
- Aus der Tabelle auf der Angabenseite erkennt man, dass damit der mittlere quadratische Fehler MQF signifikant (um den Faktor $400$) vergrößert wird.
- Dieser Effekt ist auf die Zunahme des Aliasingfehlers zurückzuführen, da durch den Übergang von $T_{\rm A}/T = 0.01$ auf $T_{\rm A}/T = 0.05$ die Frequenzperiode um den Faktor $5$ kleiner wird.
- Der Abbruchfehler spielt dagegen beim Rechteckimpuls weiterhin keine Rolle, solange $T_{\rm P} = N \cdot T_{\rm A}$ größer ist als die Impulsdauer $T$.
Richtig sind somit die Lösungsvorschläge 1 und 4.
5. Alle Aussagen treffen zu:
- Mit den Parameterwerten $N = 64$ und $T_{\rm A}/T = 0.01$ tritt ein extrem großer Abbruchfehler auf.
- Alle Zeitkoeffizienten sind hier $1$, so dass die DFT fälschlicherweise ein Gleichsignal anstelle der Rechteckfunktion interpretiert.