Difference between revisions of "Aufgaben:Exercise 3.10: Noise Power Calculation"
m (Guenter verschob die Seite 3.10 Berechnung der Rauschleistungen nach Aufgabe 3.10: Berechnung der Rauschleistungen) |
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “) |
||
Line 19: | Line 19: | ||
*Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Rauscheinfluss_bei_Winkelmodulation|Rauscheinfluss bei Winkelmodulation]]. | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Rauscheinfluss_bei_Winkelmodulation|Rauscheinfluss bei Winkelmodulation]]. | ||
*Bezug genommen wird insbesondere auf den Abschnitt [[Modulationsverfahren/Rauscheinfluss_bei_Winkelmodulation#Systemvergleich_von_AM.2C_PM_und_FM_hinsichtlich_Rauschen|Systemvergleich von AM, PM und FM hinsichtlich Rauschen]]. | *Bezug genommen wird insbesondere auf den Abschnitt [[Modulationsverfahren/Rauscheinfluss_bei_Winkelmodulation#Systemvergleich_von_AM.2C_PM_und_FM_hinsichtlich_Rauschen|Systemvergleich von AM, PM und FM hinsichtlich Rauschen]]. | ||
− | + | ||
Revision as of 13:02, 29 May 2018
Betrachtet werden die Phasen– und Frequenzmodulation einer Cosinusschwingung mit der Frequenz $f_{\rm N}$. Zunächst gelte für die Nachrichtenfrequenz $f_{\rm N} = f_5 = 5 \ \rm kHz$ und der Modulationsindex (Phasenhub) sei $η = 5$.
Bei Vorhandensein von additivem Gaußschen Rauschen mit der Rauschleistungsdichte $N_0$ ergibt sich nach dem PM–Demodulator eine konstante Rauschleistungsdichte ${\it \Phi}_{v {\rm , \hspace{0.08cm}FM} }(f) = {\it \Phi}_0$, die auch vom Modulationsindex abhängt:
- $${\it \Phi}_0 = \frac{N_0}{\eta^2} \hspace{0.05cm}.$$
Für die Berechnung der Rauschleistung $P_{\rm R}$ ist lediglich der Frequenzbereich von $±f_{\rm N}$ relevant (siehe Grafik).
Die Rauschleistungsdichte nach der FM–Demodulation lautet mit dem Frequenzhub $Δf_{\rm A}$:
- $${\it \Phi}_{v {\rm , \hspace{0.08cm}FM} } (f) = N_0 \cdot \left(\frac{f}{\Delta f_{\rm A}}\right)^2 \hspace{0.05cm}.$$
- Gegeben ist der Rauschabstand $10 · \lg ρ_v = 50 \ \rm dB$ für Phasenmodulation und $f_N = 5 kHz$.
- Gesucht sind in dieser Aufgabe der Rauschabstand bei FM für die Nachrichtenfrequenz $f_{\rm N} = 5 \ \rm kHz$) sowie die sich ergebenden Rauschabstände von PM und FM für die Nachrichtenfrequenz $f_{\rm N} = f_{10} = 10 \ \rm kHz$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Rauscheinfluss bei Winkelmodulation.
- Bezug genommen wird insbesondere auf den Abschnitt Systemvergleich von AM, PM und FM hinsichtlich Rauschen.
Fragebogen
Musterlösung
- $$ \rho_{v } = \frac{P_{\rm S}}{P_{\rm R}} = \frac{P_{\rm S}}{{\it \Phi}_0 \cdot 2 f_{\rm N} } =\frac{\eta^2}{2} \cdot \frac{P_{\rm S}}{N_0 \cdot f_{\rm N} }\hspace{0.05cm}.$$
- Die Messung mit $f_{\rm N} = f_5 = 5 \ \rm kHz$ hat das SNR $ \rho_{v } = 10^5$ (entsprechend $10 · \lg ρ_v =50 dB$) ergeben.
- Die doppelte Nachrichtenfrequenz führt zum halben SNR, da nun die doppelte Rauschleistung wirksam ist:
- $$ \rho_{v }= 0.5 \cdot 10^5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \hspace{0.15cm}\underline {\approx 46.99\,{\rm dB}}\hspace{0.05cm}.$$
Dieses Ergebnis lässt sich auch über die Beziehung $ρ_v = η^2/2 · ξ$ herleiten.
- Bei Phasenmodulation ist $η$ unabhängig von der Nachrichtenfrequenz.
- Der SNR–Verlust geht darauf zurück, dass nun die Leistungskenngröße $ξ = P_{\rm S}/(N_0 · f_{\rm N})$ halbiert wird.
(2) Bei Frequenzmodulation und der Nachrichtenfrequenz $f_{\rm N} = 5 \ \rm kHz$ erhält man für die Rauschleistung
- $$P_{\rm R} = \int_{-f_{\rm N}}^{ + f_{\rm N}} {\it \Phi}_{v {\rm , \hspace{0.08cm}FM} } (f)\hspace{0.1cm}{\rm d}f = \frac{2 \cdot N_0}{\Delta f_{\rm A}^{\hspace{0.1cm}2}} \cdot \int_{0}^{ f_{\rm N}} f^2\hspace{0.1cm}{\rm d}f = \frac{2 \cdot N_0 \cdot f_{\rm N}^{\hspace{0.1cm}3}}{3 \cdot \Delta f_{\rm A}^2} \hspace{0.05cm}.$$
Unter Berücksichtigung des Frequenzhubs $Δf_{\rm A} = η · f_{\rm N}$ ergibt sich somit:
- $$P_{\rm R} = \frac{2 \cdot N_0 \cdot f_{\rm N}}{3 \cdot \eta^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \rho_{v }= \frac{3 \cdot \eta^2 \cdot P_{\rm S}}{2 \cdot N_0 \cdot f_{\rm N}} = 3 \cdot \rho_{v {\rm , \hspace{0.08cm}PM}}\hspace{0.05cm}.$$
Das heißt: Die Frequenzmodulation ist um den Faktor $3$ (oder $4.77 \ \rm dB$) besser als die Phasenmodulation:
- $$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }= 50\,{\rm dB} + 10 \cdot {\rm lg} \hspace{0.15cm}{3}\hspace{0.15cm}\underline {\approx 54.77\,{\rm dB}}\hspace{0.05cm}.$$
(3) Entsprechend dem Ergebnis der Teilaufgabe (2) erhält man mit $f_{10} = 10 \ \rm kHz$:
- $$P_{\rm R} = \frac{2 \cdot N_0 \cdot f_{\rm 10}}{3 \cdot \eta_{10}^{\hspace{0.1cm}2}} = \frac{ f_{\rm 10} \cdot \eta_{5}^{\hspace{0.1cm}2}}{ 3 \cdot f_{\rm 5} \cdot \eta_{10}^{\hspace{0.1cm}2}}\cdot \frac{2 \cdot N_0 \cdot f_{\rm 5}}{\eta_{5}^{\hspace{0.1cm}2}} \hspace{0.05cm}.$$
Der zweite Term gibt die Rauschleistung des Vergleichssystems (PM, $f_{\rm N} = f_5$) an, die zum Ergebnis $10 · \lg ρ_v = 50\ \rm dB$ geführt hat.
Bei Frequenzmodulation ist nun jedoch der Modulationsindex $η$ umgekehrt proportional zur Nachrichtenfrequenz, so dass der Quotient $η_5^2/η_{10}^2 = 4$ ist. Somit ergibt sich für den Vorfaktor $8/3$. Aufgrund der größeren Rauschleistung ist das SNR kleiner:
- $$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }= 50\,{\rm dB} - 10 \cdot {\rm lg} \hspace{0.15cm}({8}/{3})\hspace{0.15cm}\underline {\approx 45.74\,{\rm dB}}\hspace{0.05cm}.$$
Bei gleicher Nachrichtenfrequenz $f_{\rm N} = 10 \ \rm kHz$ ist nun die FM um $1.25 \ \rm dB$ schlechter als die PM, da sich nun die Halbierung von $η$ – nach Quadrierung der Faktor $4$ – stärker auswirkt als der systembedingte Faktor $3$, um den die FM gegenüber der PM überlegen ist.
- Der Vergleich der Teilaufgaben (2) und (3) zeigt einen Unterschied um den Faktor $8$ bzw. $9.03 \ \rm dB$.
- Der ungünstigere Wert für die größere Nachrichtenfrequenz $f_{\rm N} = 10 \ \rm kHz$ ergibt sich durch den nur halb so großen Modulationsindex – nach Quadrierung Faktor $4$ – und die doppelte Rauschbandbreite.