Difference between revisions of "Aufgaben:Exercise 5.6: OFDM Spectrum"
m (Guenter verschob die Seite 5.6 OFDM–Spektrum nach Aufgabe 5.6: OFDM–Spektrum) |
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “) |
||
Line 16: | Line 16: | ||
*Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Allgemeine_Beschreibung_von_OFDM|Allgemeine Beschreibung von OFDM]]. | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Allgemeine_Beschreibung_von_OFDM|Allgemeine Beschreibung von OFDM]]. | ||
*Bezug genommen wird insbesondere auf die Seiten [[Modulationsverfahren/Allgemeine_Beschreibung_von_OFDM#Das_Prinzip_von_OFDM_.E2.80.93_Systembetrachtung_im_Zeitbereich|OFDM-Systembetrachtung im Zeitbereich]] sowie [[Modulationsverfahren/Allgemeine_Beschreibung_von_OFDM#Systembetrachtung_im_Frequenzbereich_bei_kausalem_Grundimpuls|OFDM-Systembetrachtung im Frequenzbereich bei kausalem Grundimpuls]]. | *Bezug genommen wird insbesondere auf die Seiten [[Modulationsverfahren/Allgemeine_Beschreibung_von_OFDM#Das_Prinzip_von_OFDM_.E2.80.93_Systembetrachtung_im_Zeitbereich|OFDM-Systembetrachtung im Zeitbereich]] sowie [[Modulationsverfahren/Allgemeine_Beschreibung_von_OFDM#Systembetrachtung_im_Frequenzbereich_bei_kausalem_Grundimpuls|OFDM-Systembetrachtung im Frequenzbereich bei kausalem Grundimpuls]]. | ||
− | + | ||
Revision as of 14:19, 29 May 2018
Wir betrachten hier ein OFDM–System mit $N = 4$ Trägern. Zur Vereinfachung beschränken wir uns auf ein einziges Zeitintervall $T$ und gehen auch von der Rahmendauer $T_{\rm R} = T$ aus. Ein Guard–Intervall wird demnach nicht verwendet.
Mit der Zusammenfassung von Impulsformung und Modulation durch die gemeinsame Funktion
- $$ g_\mu (t) = \left\{ \begin{array}{l} s_0 \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j2 \pi}} {\kern 1pt} \mu f_0 t} \quad 0 \le t < T, \\ 0 \quad \quad \quad \quad \quad {\rm sonst} \\ \end{array} \right.$$
ergibt sich das (komplexe) OFDM–Sendesignal im betrachteten Zeitintervall ($0 ≤ t < T$) zu:
- $$ s (t) = \sum\limits_{\mu = 0}^{N - 1} {a_{\mu} \cdot g_\mu (t )}.$$
Alle Trägerkoeffizienten $a_0$, $a_1$, $a_2$ und $a_3$ sind entweder $0$ oder $\pm 1$.. Die Grafik zeigt den Real– und Imaginärteil des Sendesignals $s(t)$ für eine gegebene Kombination von $a_0$, ... , $a_3$, die in der Teilaufgabe (3) ermittelt werden soll.
Hinweise:
- Die Aufgabe gehört zum Kapitel Allgemeine Beschreibung von OFDM.
- Bezug genommen wird insbesondere auf die Seiten OFDM-Systembetrachtung im Zeitbereich sowie OFDM-Systembetrachtung im Frequenzbereich bei kausalem Grundimpuls.
Fragebogen
Musterlösung
(2) Weiterhin erkennt man aus der Grafik die Symboldauer $T\hspace{0.15cm}\underline { = 0.2\ \rm ms}$. Daraus ergibt sich die Grundfrequenz zu $f_0 = 1/T = 5\ \rm kHz$.
(3) Im dargestellten Beispiel gibt es nur eine einzige Frequenz $3 · f_0$. Daraus folgt $a_0 = a_1 = a_2 \hspace{0.15cm}\underline { = 0}$ sowie für den Bereich $0 ≤ t < T$:
- $$s(t) = a_3 \cdot s_0 \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j\hspace{0.04cm}\cdot \hspace{0.04cm}2 \pi}} \hspace{0.04cm}\cdot \hspace{0.04cm} 3 f_0 \hspace{0.04cm}\cdot \hspace{0.04cm} t}= a_3 \cdot s_0 \cdot \cos ({\rm{2 \pi}} \cdot 3 f_0 \cdot t) + \rm{j} \cdot a_3 \cdot s_0 \cdot \sin ({\rm{2 \pi}} \cdot 3 f_0 \cdot t).$$
Der Vergleich mit der Skizze (Realteil: Minus–Cosinus, Imaginärteil: Minus–Sinus) liefert das folgende Ergebnis: $a_3\hspace{0.15cm}\underline {= -1}$.
(4) Richtig ist der zweite Lösungsvorschlag:
- Die Betragsfunktion lautet: $ |s(t)| = a_3 \cdot s_0 \cdot \sqrt{\cos^2 ({\rm{2 \pi}} \cdot 3 f_0 \cdot t) + \sin^2 ({\rm{2 \pi}} \cdot 3 f_0 \cdot t)}= a_3 \cdot s_0.$
- Allerdings gilt diese Gleichung nur im Bereich der Symboldauer $T$. Das OFDM–Prinzip funktioniert nur bei einer Zeitbegrenzung auf +$T$.
(5) Allgemein gilt für das OFDM–Spektrum:
- $$S (f) = s_0 \cdot T \cdot \sum\limits_{\mu = 0}^{N - 1} {a_{\mu } \cdot \,} {\rm{si}}(\pi \cdot T \cdot (f - \mu \cdot f_0 )) \cdot {\rm{e}}^{ - {\rm{j\hspace{0.04cm}\cdot \hspace{0.04cm}2\pi}} \hspace{0.04cm}\cdot \hspace{0.04cm}{T}/{2}\hspace{0.04cm}\cdot \hspace{0.04cm} (f - \mu \cdot f_0 )} .$$
- Die si–Funktion ergibt sich aus der zeitlichen Begrenzung auf $T$, der letzte Term in der Summe aus dem Verschiebungssatz.
- Durch die Nulldurchgänge der si–Funktion im Abstand $f_0$ sowie ${\rm s}i(0) = 1$ erhält man $S(f = μ · f_0) = s_0 · T · a_μ$.
- Mit $s_0 = 5 \ \rm V$ und $T = 0.2 \ \rm ms$ ⇒ $s_0 · T = 1\ \rm mV/Hz$ gilt weiter:
- $$ \mu = 0,\hspace{0.1cm} a_0 = 0 : S (f = 0) \hspace{0.15cm}\underline {= 0},\hspace{8cm}.$$
- $$\mu = 1, \hspace{0.1cm}a_1 = +1 : S (f = 5\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= +1\,\,{\rm{mV/Hz}}},$$
- $$ \mu = 2, \hspace{0.1cm}a_2 = -1 : S (f = 10\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= -1\,\,{\rm{mV/Hz}}},$$
- $$ \mu = 3, \hspace{0.1cm}a_3 = +1 : S (f = 15\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= +1\,\,{\rm{mV/Hz}}}.$$
(6) Beide Aussagen sind richtig:
- Die Orthogonalität bezüglich des Frequenzbereichs wurde bereits in der Teilaufgabe (5) gezeigt.
- Die Orthogonalität hinsichtlich des Zeitbereichs ergibt sich aus der Begrenzung der einzelnen Symbole auf die Zeitdauer $T$.