Difference between revisions of "Applets:Linear Distortions of Periodic Signals"

From LNTwww
Line 12: Line 12:
 
:$$z(t) = k_{\rm M} \cdot  y(t-\tau_{\rm M})  +  \alpha_2  \cdot  x_2(t-\tau_2),$$
 
:$$z(t) = k_{\rm M} \cdot  y(t-\tau_{\rm M})  +  \alpha_2  \cdot  x_2(t-\tau_2),$$
 
*the difference signal    $\varepsilon(t) = z(t) - x(t)$   ⇒   power $P_\varepsilon$.  
 
*the difference signal    $\varepsilon(t) = z(t) - x(t)$   ⇒   power $P_\varepsilon$.  
 +
  
 
'''Beginn Anpassen'''
 
'''Beginn Anpassen'''
Line 22: Line 23:
  
 
'''Ende Anpassen'''
 
'''Ende Anpassen'''
 +
 +
'''Beginn Änderungen im deutschen Text:'''
 +
 +
Als nächster Block im obigen Modell folgt das „Matching”:  Dabei wird das Ausgangssignal $y(t)$ mit für alle Frequenzen einheitlichen Größen  $k_{\rm M}$ und $\tau_{\rm M}$ in Amplitude bzw. Phase angepasst. Dies ist also keine frequenzabhängige Entzerrung. Anhand des Signals $z(t)$ kann unterschieden werden
 +
*zwischen einer Dämpfungsverzerrung und einer frequenzunabhängigen Dämpfung, sowie
 +
*zwischen einer Phasenverzerrung und einer für alle Frequenzen gleichen Laufzeit.
 +
 +
 +
Als Maß für die Stärke der linearen Verzerrungen wird die Verzerrungsleistung (englisch: ''Distortion Power'') $P_{\rm D}$ verwendet. Für diese gilt:
 +
:$$P_{\rm D} = \min_{k_{\rm M},  \ \tau_{\rm M}} P_\varepsilon.$$
 +
'Ende Änderungen im deutschen Text:'''
  
 
==Theoretical background==
 
==Theoretical background==
Line 71: Line 83:
 
=== Low&ndash;pass of order <i>N</i>  ===
 
=== Low&ndash;pass of order <i>N</i>  ===
 
<br>
 
<br>
 +
[[File:Tiefpass_version2.png|right|frame|Dämpfungsverlauf und Phasenverlauf eines Tiefpasses <i>N</i>&ndash;ter Ordnung]]
 
The frequency response of a realizable <i>N</i> grade low pass is:
 
The frequency response of a realizable <i>N</i> grade low pass is:
 
:$$H(f) = \left [\frac{1}{1 + {\rm j}\cdot f/f_0 }\right ]^N\hspace{0.05cm}.$$
 
:$$H(f) = \left [\frac{1}{1 + {\rm j}\cdot f/f_0 }\right ]^N\hspace{0.05cm}.$$
Line 79: Line 92:
 
:$$b(f) =N \cdot \arctan( f/f_0) \hspace{0.05cm},$$
 
:$$b(f) =N \cdot \arctan( f/f_0) \hspace{0.05cm},$$
 
*the attenuation factor for the frequency $f=f_i$:
 
*the attenuation factor for the frequency $f=f_i$:
:$$\alpha_i =|H(f = f_i)| =  [1+( f/f_0)^2]^{N/2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm}  y(t)= \alpha_i  \cdot A_i\cdot \cos(2\pi f_i t)\hspace{0.05cm},$$
+
:$$\alpha_i =|H(f = f_i)| =  [1+( f/f_0)^2]^{N/2}$$
 +
:$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm}  y(t)= \alpha_i  \cdot A_i\cdot \cos(2\pi f_i t)\hspace{0.05cm},$$
 
*the phase delay for the frequency $f=f_i$:
 
*the phase delay for the frequency $f=f_i$:
:$$\tau_i =\frac{b(f_i)}{2 \pi f_i} = \frac{N \cdot \arctan( f_i/f_0)}{2 \pi f_i} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm}  y(t)=A_i\cdot \cos(2\pi f_i (t- \tau_i))\hspace{0.05cm},$$
+
:$$\tau_i =\frac{b(f_i)}{2 \pi f_i} = \frac{N \cdot \arctan( f_i/f_0)}{2 \pi f_i}$$
 +
:$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm}  y(t)=A_i\cdot \cos(2\pi f_i (t- \tau_i))\hspace{0.05cm}.$$
  
[[File:Tiefpass.png|center|frame|Attenuation and phase curve of an <i>N</i>  grade low pass]]
 
  
 
=== High&ndash;pass of order <i>N</i>  ===
 
=== High&ndash;pass of order <i>N</i>  ===
 
<br>
 
<br>
 +
[[File:Hochpass_version2.png|right|frame|Dämpfungsverlauf und Phasenverlauf eines Hochpasses <i>N</i>&ndash;ter Ordnung]]
 
The frequency response of a realizable <i>N</i> grade high pass is:
 
The frequency response of a realizable <i>N</i> grade high pass is:
 
:$$H(f) = \left [\frac{ {\rm j}\cdot f/f_0 }{1 + {\rm j}\cdot f/f_0 }\right ]^N\hspace{0.05cm}.$$
 
:$$H(f) = \left [\frac{ {\rm j}\cdot f/f_0 }{1 + {\rm j}\cdot f/f_0 }\right ]^N\hspace{0.05cm}.$$
Line 95: Line 110:
 
:$$b(f) =-N \cdot \arctan( f_0/f) \hspace{0.05cm},$$
 
:$$b(f) =-N \cdot \arctan( f_0/f) \hspace{0.05cm},$$
 
*the attenuation factor for the frequency $f=f_i$:
 
*the attenuation factor for the frequency $f=f_i$:
:$$\alpha_i =|H(f = f_i)| =  [1+( f_0/f)^2]^{N/2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm}  y(t)= \alpha_i  \cdot A_i\cdot \cos(2\pi f_i t)\hspace{0.05cm},$$
+
:$$\alpha_i =|H(f = f_i)| =  [1+( f_0/f)^2]^{N/2}$$
 +
:$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm}  y(t)= \alpha_i  \cdot A_i\cdot \cos(2\pi f_i t)\hspace{0.05cm},$$
 
*the phase delay for the frequency $f=f_i$:
 
*the phase delay for the frequency $f=f_i$:
:$$\tau_i =\frac{b(f_i)}{2\pi f_i} = \frac{-N \cdot \arctan( f_0/f_i)}{2\pi f_i} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm}  y(t)=A_i\cdot \cos(2\pi f_i (t- \tau_i))\hspace{0.05cm},$$
+
:$$\tau_i =\frac{b(f_i)}{2\pi f_i} = \frac{-N \cdot \arctan( f_0/f_i)}{2\pi f_i}$$
[[File:Hochpass.png|center|frame|Attenuation and phase curve of an <i>N</i> grade high pass]]
+
:$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm}  y(t)=A_i\cdot \cos(2\pi f_i (t- \tau_i))\hspace{0.05cm}.$$
 +
 
 +
 
 +
[[File:Verzerrungen_HP_TP_1_englisch.png|right|frame|Phasenfunktion $b(f)$ von Tiefpass und Hochpass]]
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel:}$&nbsp;
 +
Die Grafik zeigt jeweils für die Grenzfrequenz $f_0 = 1\ \rm kHz$ und die Ordnung $N=1$ die Phasenfunktion $b(f)$
 +
* eines Tiefpasses (englisch: ''Low&ndash;pass'') als grüne Kurve, und
 +
* eines Hochpasses (englisch: ''High&ndash;pass'') als violette  Kurve.
 +
 
 +
 
 +
Das Eingangssignal sei jeweils sinusförmig mit der Frequenz $f_{\rm S} = 1.25\ {\rm kHz}$, wobei dieses Signal erst zum Zeitpunkt $t=0$ eingeschaltet wird:
 +
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.75cm}0  \\ \sin(2\pi \cdot f_{\rm S}  \cdot t  \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r} }  \\  {\rm{f\ddot{u}r} }    \\ \end{array}\begin{array} t < 0, \\  t>0. \\ \end{array}$$
 +
 
 +
In der linken (blau umrandeten) Grafik ist dieses Signal $x(t)$ dargestellt. Der Zeitpunkt $t = T_0 = 0.8\ {\rm ms}$ der ersten Nullstelle ist durch eine gestrichelte Linie markiert. Die beiden anderen Grafiken zeigen die Ausgangssignale $y_{\rm TP}(t)$ und $y_{\rm HP}(t)$ von Tiefpass und Hochpass, wobei in beiden Fällen die Amplitudenänderungen ausgeglichen wurden.
 +
 
 +
[[File:Verzerrungen_HP_TP_2_version2.png|center|frame|Eingangssignal $x(t)$ sowie Ausgangssignale  $y_{\rm TP}(t)$ und $y_{\rm HP}(t)$]]
 +
 
 +
*Die erste Nullstelle des Signals $y_{\rm TP}(t)$ nach dem Tiefpass kommt um $\tau_{\rm TP} = 0.9/(2\pi) \cdot T_0 \approx 0.115 \ {\rm ms}$ später als die erste Nullstelle von $x(t)$ &nbsp; &rArr; &nbsp; markiert mit grünem Pfeil, wobei $b_{\rm TP}(f/f_{\rm S} = 0.9 \ {\rm rad}$ berücksichtigt wurde.
 +
* Dagegen ist die Laufzeit des Hochpasses negativ:  $\tau_{\rm HP} = -0.67/(2\pi) \cdot T_0 \approx 0.085 \ {\rm ms}$ und die erste Nullstelle von $y_{\rm HP}(t)$ kommt deshalb vor der weißen Markierung.
 +
*Nach diesem Einschwingvorgang kommen in beiden Fällen die Nulldurchgänge wieder im Raster der Periodendauer  $T_0 = 0.8 \ {\rm ms}.$
 +
 
  
=== Laufzeiten bei Tiefpass und Hochpass  ===
+
''Anmerkung:'' Die gezeigten Signalverläufe wurden mit dem intereaktiven Applet [[Applets:Kausale_Systeme_-_Laplacetransformation|Kausale Systeme &ndash; Laplacetransformation]] erstellt. }}
  
Mache ich noch
 
  
 
=== Dämpfungsverzerrungen und  Phasenverzerrungen  ===
 
=== Dämpfungsverzerrungen und  Phasenverzerrungen  ===
 +
<br>
 +
[[File:P_ID900__LZI_T_2_3_S2_neu.png|frame| Voraussetzung für einen nichtverzerrenden Kanal|right|class=fit]]
 +
Die nebenstehende Grafik zeigt
 +
*den geraden Dämpfungsverlauf $a(f)$ &nbsp; &rArr; &nbsp; $a(-f) = a(f)$, und
 +
*den ungeraden Phasenverlauf $b(f)$ &nbsp; &rArr; &nbsp; $b(-f) = -b(- f)$
 +
 +
eines verzerrungsfreien Systems. Man erkennt:
 +
*Bei einem verzerrungsfreien Systems muss in einem Bereich von $f_{\rm U}$ bis $f_{\rm O}$ um die Trägerfrequenz $f_{\rm T}$, in dem das Signal $x(t)$ Anteile besitzt, die  Dämpfungsfunktion $a(f)$ konstant sein.
 +
*Aus dem angegebenen konstanten Dämpfungswert $6 \ \rm dB$ folgt für den Amplitudengang $|H(f)| = 0.5$ &nbsp; &rArr; &nbsp; die Signalwerte aller Frequenzen werden somit durch das System halbiert &nbsp; &rArr; &nbsp; keine Dämpfungsverzerrungen.
 +
*Zusätzlich muss bei einem solchen Systems der Phasenverlauf $b(f)$ zwischen $f_{\rm U}$ und $f_{\rm O}$ linear mit der Frequenz ansteigen. Dies hat zur Folge, dass alle Frequenzanteile um die gleiche Phasenlaufzeit $τ$ verzögert werden &nbsp; &rArr; &nbsp;  keine Phasenverzerrungen.
 +
*Die Verzögerung $τ$ liegt durch die Steigung von $b(f)$ fest. Mit $b(f) = 0$ würde sich ein laufzeitfreies Systemergeben  &nbsp; &rArr; &nbsp; $τ = 0$.
 +
  
Überarbeite ich noch
+
Die folgende Zusammenfassung berücksichtigt, dass in diesem Applet für das Einganssignal stets die Summe zweier harmonischer Schwingungen  ist,
 +
:$$x(t) = x_1(t) + x_2(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right), $$
 +
und damit der Kanaleinfluss durch die Dämpfungsfaktoren $\alpha_1$ und $\alpha_2$ sowie die Phasenlaufzeiten  $\tau_1 = \tau_2$ vollständig beschrieben wird:
 +
:$$y(t) = \alpha_1 \cdot  x_1(t-\tau_1)  +  \alpha_2  \cdot  x_2(t-\tau_2).$$
  
Lineare Verzerrungen treten üblicherweise in Form von
+
{{BlaueBox|TEXT= 
* Dämpfungsverzerrungen $\alpha_i$ und
+
$\text{Fazit:}$&nbsp;
* Phasenverzerrungen $\tau_i$ auf.
+
* Dämpfungsverzerrungen gibt es, falls  $\alpha_1 \ne \alpha_2$ ist . Ist $\alpha_1 \ne \alpha_2$ und $\tau_1 = \tau_2$, so liegen ausschließlich Dämpfungsverzerrungen vor.  
Ist $\alpha_1 \ne \alpha_2$ und $\tau_1 = \tau_2$, so liegen ausschließlich Dämpfungsverzerrungen vor.  
+
* Phasenverzerrungen gibt es, falls  $\tau_1 \ne \tau_2$ ist . Ist $\tau_1 \ne \tau_2$ und $\alpha_1 = \alpha_2$, so liegen ausschließlich Dämpfungsverzerrungen vor.  
Dagegen führt $\alpha_1  = \alpha_2$ und $\tau_1 \ne \tau_2$ zu reinen Phasenverzerrungen.<br />
+
*Ein Signal $y(t)$ ist gegenüber dem Eingang $x(t)$ nur dann unverzerrt, wenn $\alpha_1 = \alpha_2= \alpha$ &nbsp;<u> und </u>&nbsp; $\tau_1 = \tau_2= \tau$ gilt &nbsp; &rArr; &nbsp; $y(t) = \alpha \cdot  x(t-\tau)$. }}
Ein Signal $y(t)$ ist gegenüber $x(t)$ unverzerrt, wenn $\alpha_1 = \alpha_2$ und $\tau_1 und \tau_2$ gilt.
 
  
 
==Vorschlag für die Versuchsdurchführung==
 
==Vorschlag für die Versuchsdurchführung==

Revision as of 14:38, 20 January 2018

Open Applet in new Tab

Applet description


This applet illustrates the effects of linear distortions(attenuation distortions and phase distortions) with

Meanings of the signals used
  • the input signal $x(t)$   ⇒   power $P_x$:
$$x(t) = x_1(t) + x_2(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right), $$
  • the output signal $y(t)$   ⇒   power $P_y$:
$$y(t) = \alpha_1 \cdot x_1(t-\tau_1) + \alpha_2 \cdot x_2(t-\tau_2),$$
  • the matching output signal $z(t)$   ⇒   power $P_z$:
$$z(t) = k_{\rm M} \cdot y(t-\tau_{\rm M}) + \alpha_2 \cdot x_2(t-\tau_2),$$
  • the difference signal   $\varepsilon(t) = z(t) - x(t)$   ⇒   power $P_\varepsilon$.


Beginn Anpassen The next block in the above model is Matching. adjustment of the output signal's amplitude and phase $y(t)$   ⇒   „” allows for a differentiation between

  • attenuation distortion and frequency–independant attenuation, as well as
  • phase distortion and pure frequency–independant delay.


The Distortion Power $P_{\rm D}$ is used to measure the strength of the linear distortion.

Ende Anpassen

Beginn Änderungen im deutschen Text:

Als nächster Block im obigen Modell folgt das „Matching”: Dabei wird das Ausgangssignal $y(t)$ mit für alle Frequenzen einheitlichen Größen $k_{\rm M}$ und $\tau_{\rm M}$ in Amplitude bzw. Phase angepasst. Dies ist also keine frequenzabhängige Entzerrung. Anhand des Signals $z(t)$ kann unterschieden werden

  • zwischen einer Dämpfungsverzerrung und einer frequenzunabhängigen Dämpfung, sowie
  • zwischen einer Phasenverzerrung und einer für alle Frequenzen gleichen Laufzeit.


Als Maß für die Stärke der linearen Verzerrungen wird die Verzerrungsleistung (englisch: Distortion Power) $P_{\rm D}$ verwendet. Für diese gilt:

$$P_{\rm D} = \min_{k_{\rm M}, \ \tau_{\rm M}} P_\varepsilon.$$

'Ende Änderungen im deutschen Text:

Theoretical background


Distortions refer to generally unwanted alterations of a message signal through a transmission system. Together with the strong stochastic effects (noise, crosstalk, etc.), they are a crucial limitation for the quality and rate of transmission.

Just as the „Stärke” of noise can be assessed through

  • the Noise Power $P_{\rm N}$ and
  • the Signal–to–Noise Ratio (SNR) $\rho_{\rm N}$,


Distortions can be quantified through

  • the Distortion Power $P_{\rm D}$ and
  • the Signal–to–Distortion Ratio (SDR)
$$\rho_{\rm D}=\frac{\rm Signal \ Power}{\rm Distortion \ Power} = \frac{P_x}{P_{\rm D} }.$$


Linear and nonlinear distortions


A distinction is made between linear and nonlinear distortions:

  • Nonlinear distortions occur, if at all times $t$ the nonlinear correlation $y = g(x) \ne {\rm const.} \cdot x$ exists between the signal values $x = x(t)$ at the input and $y = y(t)$ at the output, whereby $y = g(x)$ is defined as the system's nonlinear characteristic. By creating a cosine signal at the input with frequency $f_0$ the output signal value includes $f_0$ as well as multiple harmonic waves. We conclude that new frequencies arise through nonlinear distortion.
For clarification of nonlinear distortions
Description of a linear system
  • Linear distortions occur, if the transmission channel is characterized by a frequency response $H(f) \ne \rm const.$ Various frequencies are attenuated and delayed differently. Characteristic of this is that although frequencies can disappear (for example, through a Low–pass or a High–pass), no new frequencies can arise.


In this applet only linear distortions are considered.


Description forms for the frequency response


The generally complex valued frequency response can be represented as follows:

$$H(f) = |H(f)| \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b(f)} = {\rm e}^{-a(f)}\cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b(f)}.$$

This results in the following description variables:

  • The absolute value $|H(f)|$ is called Amplitude response and in logarithmic form Attenuation curve:
$$a(f) = - \ln |H(f)|\hspace{0.2cm}{\rm in \hspace{0.1cm}Neper \hspace{0.1cm}(Np) } = - 20 \cdot \lg |H(f)|\hspace{0.2cm}{\rm in \hspace{0.1cm}Decibel \hspace{0.1cm}(dB) }.$$
  • The Phase response $b(f)$ indicates the negative frequency–dependent angle of $H(f)$ in the complex plane based on the real axis:
$$b(f) = - {\rm arc} \hspace{0.1cm}H(f) \hspace{0.2cm}{\rm in \hspace{0.1cm}Radian \hspace{0.1cm}(rad)}.$$

Low–pass of order N


Dämpfungsverlauf und Phasenverlauf eines Tiefpasses N–ter Ordnung

The frequency response of a realizable N grade low pass is:

$$H(f) = \left [\frac{1}{1 + {\rm j}\cdot f/f_0 }\right ]^N\hspace{0.05cm}.$$

For example the RC low pass is a first grade low pass. Consequently we can obtain

  • the attenuation curve:
$$a(f) =N/2 \cdot \ln [1+( f/f_0)^2] \hspace{0.05cm},$$
  • the phase curve:
$$b(f) =N \cdot \arctan( f/f_0) \hspace{0.05cm},$$
  • the attenuation factor for the frequency $f=f_i$:
$$\alpha_i =|H(f = f_i)| = [1+( f/f_0)^2]^{N/2}$$
$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm} y(t)= \alpha_i \cdot A_i\cdot \cos(2\pi f_i t)\hspace{0.05cm},$$
  • the phase delay for the frequency $f=f_i$:
$$\tau_i =\frac{b(f_i)}{2 \pi f_i} = \frac{N \cdot \arctan( f_i/f_0)}{2 \pi f_i}$$
$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm} y(t)=A_i\cdot \cos(2\pi f_i (t- \tau_i))\hspace{0.05cm}.$$


High–pass of order N


Dämpfungsverlauf und Phasenverlauf eines Hochpasses N–ter Ordnung

The frequency response of a realizable N grade high pass is:

$$H(f) = \left [\frac{ {\rm j}\cdot f/f_0 }{1 + {\rm j}\cdot f/f_0 }\right ]^N\hspace{0.05cm}.$$

For example the LC high pass is a first grade high pass. Consequently we can obtain

  • the attenuation curve:
$$a(f) =N/2 \cdot \ln [1+( f_0/f)^2] \hspace{0.05cm},$$
  • the phase curve:
$$b(f) =-N \cdot \arctan( f_0/f) \hspace{0.05cm},$$
  • the attenuation factor for the frequency $f=f_i$:
$$\alpha_i =|H(f = f_i)| = [1+( f_0/f)^2]^{N/2}$$
$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm} y(t)= \alpha_i \cdot A_i\cdot \cos(2\pi f_i t)\hspace{0.05cm},$$
  • the phase delay for the frequency $f=f_i$:
$$\tau_i =\frac{b(f_i)}{2\pi f_i} = \frac{-N \cdot \arctan( f_0/f_i)}{2\pi f_i}$$
$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm} y(t)=A_i\cdot \cos(2\pi f_i (t- \tau_i))\hspace{0.05cm}.$$


Phasenfunktion $b(f)$ von Tiefpass und Hochpass

$\text{Beispiel:}$  Die Grafik zeigt jeweils für die Grenzfrequenz $f_0 = 1\ \rm kHz$ und die Ordnung $N=1$ die Phasenfunktion $b(f)$

  • eines Tiefpasses (englisch: Low–pass) als grüne Kurve, und
  • eines Hochpasses (englisch: High–pass) als violette Kurve.


Das Eingangssignal sei jeweils sinusförmig mit der Frequenz $f_{\rm S} = 1.25\ {\rm kHz}$, wobei dieses Signal erst zum Zeitpunkt $t=0$ eingeschaltet wird:

$$x(t) = \left\{ \begin{array}{l} \hspace{0.75cm}0 \\ \sin(2\pi \cdot f_{\rm S} \cdot t \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r} } \\ {\rm{f\ddot{u}r} } \\ \end{array}\begin{array} t < 0, \\ t>0. \\ \end{array}$$

In der linken (blau umrandeten) Grafik ist dieses Signal $x(t)$ dargestellt. Der Zeitpunkt $t = T_0 = 0.8\ {\rm ms}$ der ersten Nullstelle ist durch eine gestrichelte Linie markiert. Die beiden anderen Grafiken zeigen die Ausgangssignale $y_{\rm TP}(t)$ und $y_{\rm HP}(t)$ von Tiefpass und Hochpass, wobei in beiden Fällen die Amplitudenänderungen ausgeglichen wurden.

Eingangssignal $x(t)$ sowie Ausgangssignale $y_{\rm TP}(t)$ und $y_{\rm HP}(t)$
  • Die erste Nullstelle des Signals $y_{\rm TP}(t)$ nach dem Tiefpass kommt um $\tau_{\rm TP} = 0.9/(2\pi) \cdot T_0 \approx 0.115 \ {\rm ms}$ später als die erste Nullstelle von $x(t)$   ⇒   markiert mit grünem Pfeil, wobei $b_{\rm TP}(f/f_{\rm S} = 0.9 \ {\rm rad}$ berücksichtigt wurde.
  • Dagegen ist die Laufzeit des Hochpasses negativ: $\tau_{\rm HP} = -0.67/(2\pi) \cdot T_0 \approx 0.085 \ {\rm ms}$ und die erste Nullstelle von $y_{\rm HP}(t)$ kommt deshalb vor der weißen Markierung.
  • Nach diesem Einschwingvorgang kommen in beiden Fällen die Nulldurchgänge wieder im Raster der Periodendauer $T_0 = 0.8 \ {\rm ms}.$


Anmerkung: Die gezeigten Signalverläufe wurden mit dem intereaktiven Applet Kausale Systeme – Laplacetransformation erstellt.


Dämpfungsverzerrungen und Phasenverzerrungen


Voraussetzung für einen nichtverzerrenden Kanal

Die nebenstehende Grafik zeigt

  • den geraden Dämpfungsverlauf $a(f)$   ⇒   $a(-f) = a(f)$, und
  • den ungeraden Phasenverlauf $b(f)$   ⇒   $b(-f) = -b(- f)$

eines verzerrungsfreien Systems. Man erkennt:

  • Bei einem verzerrungsfreien Systems muss in einem Bereich von $f_{\rm U}$ bis $f_{\rm O}$ um die Trägerfrequenz $f_{\rm T}$, in dem das Signal $x(t)$ Anteile besitzt, die Dämpfungsfunktion $a(f)$ konstant sein.
  • Aus dem angegebenen konstanten Dämpfungswert $6 \ \rm dB$ folgt für den Amplitudengang $|H(f)| = 0.5$   ⇒   die Signalwerte aller Frequenzen werden somit durch das System halbiert   ⇒   keine Dämpfungsverzerrungen.
  • Zusätzlich muss bei einem solchen Systems der Phasenverlauf $b(f)$ zwischen $f_{\rm U}$ und $f_{\rm O}$ linear mit der Frequenz ansteigen. Dies hat zur Folge, dass alle Frequenzanteile um die gleiche Phasenlaufzeit $τ$ verzögert werden   ⇒   keine Phasenverzerrungen.
  • Die Verzögerung $τ$ liegt durch die Steigung von $b(f)$ fest. Mit $b(f) = 0$ würde sich ein laufzeitfreies Systemergeben   ⇒   $τ = 0$.


Die folgende Zusammenfassung berücksichtigt, dass in diesem Applet für das Einganssignal stets die Summe zweier harmonischer Schwingungen ist,

$$x(t) = x_1(t) + x_2(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right), $$

und damit der Kanaleinfluss durch die Dämpfungsfaktoren $\alpha_1$ und $\alpha_2$ sowie die Phasenlaufzeiten $\tau_1 = \tau_2$ vollständig beschrieben wird:

$$y(t) = \alpha_1 \cdot x_1(t-\tau_1) + \alpha_2 \cdot x_2(t-\tau_2).$$

$\text{Fazit:}$ 

  • Dämpfungsverzerrungen gibt es, falls $\alpha_1 \ne \alpha_2$ ist . Ist $\alpha_1 \ne \alpha_2$ und $\tau_1 = \tau_2$, so liegen ausschließlich Dämpfungsverzerrungen vor.
  • Phasenverzerrungen gibt es, falls $\tau_1 \ne \tau_2$ ist . Ist $\tau_1 \ne \tau_2$ und $\alpha_1 = \alpha_2$, so liegen ausschließlich Dämpfungsverzerrungen vor.
  • Ein Signal $y(t)$ ist gegenüber dem Eingang $x(t)$ nur dann unverzerrt, wenn $\alpha_1 = \alpha_2= \alpha$   und   $\tau_1 = \tau_2= \tau$ gilt   ⇒   $y(t) = \alpha \cdot x(t-\tau)$.

Vorschlag für die Versuchsdurchführung


BlaBla

(1)   Für das Sendesignal $x(t)$ gelte $A_1 = 0.8\ {\rm V}, \ A_2 = 0.6\ {\rm V}, \ f_1 = 0.5\ {\rm kHz}, \ f_2 = 1.5\ {\rm kHz}, \ \varphi_1 = 90^\circ, \ \varphi_2 = 0^\circ$.

Wie groß ist die Periodendauer $T_0$? Welche Leistung $P_x$ weist dieses Signal auf? Wo können Sie diesen Wert im Programm ablesen?


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}T_0 = \big [\hspace{-0.1cm}\text{ größter gemeinsamer Teiler }(0.5 \ {\rm kHz}, \ 1.5 \ {\rm kHz})\big ]^{-1}\hspace{0.15cm}\underline{ = 2.0 \ {\rm ms}};$

$\hspace{1.85cm} P_x = A_1^2/2 + A_2^2/2 \hspace{0.15cm}\underline{= 0.5 \ {\rm V^2}} = P_\varepsilon\text{, wenn }\hspace{0.15cm}\underline{k_{\rm M} = 0} \ \Rightarrow \ z(t) \equiv 0$.

(2)   Variieren Sie bei sonst gleicher Einstellung wie unter (1) die Phase $\varphi_2$ im gesamten möglichen Bereich $\pm 180^\circ$. Wie ändern sich $T_0$ und $P_x$?


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Keine Veränderungen:}\hspace{0.2cm}\hspace{0.15cm}\underline{ T_0 = 2.0 \ {\rm ms}; \hspace{0.2cm} P_x = 0.5 \ {\rm V^2}}$.

(3)   Variieren Sie bei sonst gleicher Einstellung wie unter (1) die Frequenz $f_2$ im Bereich $0 \le f_2 \le 5\ {\rm kHz}$. Wie ändert sich die Signalleistung $P_x$?


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Keine Veränderungen, falls }f_2 \ne 0\text{ oder } f_2 \ne f_1\text{:}\hspace{0.3cm} \hspace{0.15cm}\underline{P_x = 0.5 \ {\rm V^2}}\text{.} \hspace{0.2cm} T_0 \text{ ändert sich, falls }f_2\text{ kein Vielfaches von }f_1$.

$\hspace{1.85cm}\text{Falls }f_2 = 0\text{:}\hspace{0.2cm} P_x = A_1^2/2 + A_2^2\hspace{0.15cm}\underline{ = 0.68 \ {\rm V^2}}$. $\hspace{3cm}\text{Allgemeine Formel noch überprüfen}$

$\hspace{1.85cm}\text{Falls }f_2 = f_1\text{:}\hspace{0.2cm} P_x = [A_1\cos(\varphi_1) + A_2\cos(\varphi_2)]^2/2 + [A_1\sin(\varphi_1) + A_2\sin(\varphi_2)]^2/2 \text{. Mit } \varphi_1 = 90^\circ, \ \varphi_2 = 0^\circ\text{:}\hspace{0.3cm}\hspace{0.15cm}\underline{ P_x = 0.5 \ {\rm V^2}}\text{.} $

(4)   Ausgehend vom bisherigen Sendesignal $x(t)$ gelte für den Kanal: $\alpha_1 = \alpha_2 = 0.5, \ \tau_1 = \tau_2 = 0.5\ {\rm ms}$. Zudem sei $k_{\rm M} = 1 \text{ und } \tau_{\rm M} = 0$ .

Gibt es lineare Verzerrungen? Wie groß ist die Empfangsleistung $P_y$ und die Leistung $P_\varepsilon$ des Differenzsignals $\varepsilon(t) = z(t) - x(t)$?


$\hspace{1.0cm}\Rightarrow \hspace{0.3cm}\hspace{0.15cm}\underline{ y(t) = 0.5 \cdot x(t- 1\ {\rm ms})}\text{ ist unverzerrt, nur gedämpft und verzögert.}$

$\hspace{1.85cm}\text{Empfangsleistung:}\hspace{0.2cm} P_y = (A_1/2)^2/2 + (A_2/2)^2/2\hspace{0.15cm}\underline{ = 0.125 \ {\rm V^2}}\text{. } P_\varepsilon \text{ ist deutlich größer:} \hspace{0.1cm} \hspace{0.15cm}\underline{P_\varepsilon = 0.625 \ {\rm V^2}}.$

(5)   Variieren Sie bei sonst gleicher Einstellung wie unter (4) die Matchingparameter $k_{\rm M} \text{ und } \tau_{\rm M}$. Wie groß ist die Verzerrungsleistung $P_{\rm D}$?


$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D}\text{ ist gleich der Leistung }P_\varepsilon \text{ des Differenzsignals bei bestmöglicher Anpassung:} \hspace{0.2cm}k_{\rm M} = 2 \text{ und } \tau_{\rm M}=T_0 - 0.5\ {\rm ms} = 1.5\ {\rm ms}$

$\hspace{1.0cm}\Rightarrow \hspace{0.3cm}z(t) = x(t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\varepsilon(t) = 0\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm D}\hspace{0.15cm}\underline{ = P_\varepsilon = 0} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{weder Dämpfungs- noch Phasenverzerrungen.}$

(6)   Für den Kanal gelte nun $\alpha_1 = 0.5, \hspace{0.15cm}\underline{\alpha_2 = 0.2}, \ \tau_1 = \tau_2 = 0.5\ {\rm ms}$. Wie groß sind nun die Verzerrungsleistung $P_{\rm D}$ und das $\rm SDR$ $\rho_{\rm D}$?


$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D} = P_\varepsilon \text{ bei bestmöglicher Anpassung:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 2.24} \text{ und } \hspace{0.15cm}\underline{\tau_{\rm M} = 1.5\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} = 0.059 \ {\rm V^2}}$.

$\hspace{1.85cm}\text{Nur Dämpfungsverzerrungen.} \hspace{0.3cm}\text{Signal-zu-Verzerrung-Leistungsverhältnis}\ \hspace{0.15cm}\underline{\rho_{\rm D} = P_x/P_\varepsilon \approx 8.5}$.

(7)   Für den Kanal gelte nun $\alpha_1 = \alpha_2 = 0.5, \ \tau_1 \hspace{0.15cm}\underline{= 2\ {\rm ms} }, \ \tau_2 = 0.5\ {\rm ms}$. Wie groß sind nun $P_{\rm D}$ und $\rho_{\rm D}$?


$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D} = P_\varepsilon \text{ bei bestmöglicher Anpassung:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 1.82} \text{ und } \tau_{\rm M}\hspace{0.15cm}\underline{ = 0.15\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} = 0.072 \ {\rm V^2}}$.

$\hspace{1.85cm}\text{Nur Phasenverzerrungen.} \hspace{0.3cm}\text{Signal-zu-Verzerrung-Leistungsverhältnis}\ \hspace{0.15cm}\underline{\rho_{\rm D} = P_x/P_\varepsilon \approx 7}$.

(8)   Für den Kanal gelte nun $\hspace{0.15cm}\underline{\alpha_1 = 0.5} , \hspace{0.15cm}\underline{\alpha_2 = 0.2} , \ \hspace{0.15cm}\underline{\tau_1= 2\ {\rm ms} }, \ \hspace{0.15cm}\underline{\tau_2 = 0.5\ {\rm ms} }$. Wie groß sind nun $P_{\rm D}$ und $\rho_{\rm D}$? Wie lässt sich $y(t)$ annähern?


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Dämpfungs- und Phasenverzerrungen. Bestmögliche Anpassung:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 2.06} \text{, } \hspace{0.15cm}\underline{\tau_{\rm M} = 0.15\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} = 0.136 \ {\rm V^2}},\hspace{0.1cm}\hspace{0.15cm}\underline{\rho_{\rm D} \approx 3.7}$.

$\hspace{1.85cm}\text{Zusammenfassen von }\varphi \text{- und } \tau\text{-Parameter: } y(t) = 0.4 \ {\rm V} \cdot \sin\ (2\pi f_1 t) - 0.12 \ {\rm V} \cdot \sin\ (2\pi \cdot 3f_1\cdot t) \hspace{0.15cm}\underline{\approx 0.52 \ {\rm V} \cdot \sin^3(2\pi f_1 t)}$.

(9)   Nun gelte $\underline{A_1 = A_2 = 1\ {\rm V}, \ f_1 = 1\ {\rm kHz}, \ f_2 = 1\ {\rm kHz}, \ \varphi_1 = 0^\circ, \ \varphi_2 = 0^\circ}$. Der Kanal sei ein Tiefpass erster Ordnung $\underline{(f_0 = 1\ {\rm kHz})}$.

Gibt es Dämpfungsverzerrungen? Gibt es Phasenverzerrungen? Wie groß ist nun die Verzerrungsleistung $P_{\rm D}$?


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Dämpfungsverzerrungen, da }\hspace{0.15cm}\underline{\alpha_1 = 0.71 \ne \alpha_2 = 0.45} \text{; geringere Phasenverzerrungen, da }\hspace{0.15cm}\underline{ \tau_1 = 0.13 \ {\rm ms} \approx \tau_2 = 0.09 \ {\rm ms}}$.

$\hspace{1.85cm}\text{ Verzerrungsleistung }\hspace{0.15cm}\underline{P_{\rm D} = 0.074 \ {\rm V^2}} \text{ bei bestmöglicher Anpassung:} \hspace{0.2cm}k_{\rm M}\hspace{0.15cm}\underline{ = 1.6} \text{ und } \tau_{\rm M}\hspace{0.15cm}\underline{ = 0.9\ {\rm ms} }$.

(10)   Wie ändern sich die Kanalparameter durch einen Tiefpass zweiter Ordnung gegenüber einem Tiefpass erster Ordnung $(f_0 = 1\ {\rm kHz})$.

Wie groß ist nun die Verzerrungsleistung $P_{\rm D}$? Wie groß ist nun die Verzerrungsleistung $P_{\rm D}$?


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Es gilt }\hspace{0.15cm}\underline{\alpha_1 = 0.71^2 \approx 0.5, \alpha_2 = 0.45^2 \approx 0.5, \tau_1 = 2 \cdot 0.13 \approx 0.25 \ {\rm ms} \tau_2 = 2 \cdot 0.09 \ {\rm ms} \approx 0.18 \ {\rm ms}} $.

$\hspace{1.85cm}P_{\rm D} = 0.228 \ {\rm V^2} \text { ist größer und der 2 kHz-Anteil wird im Vergleich zum 2 kHz-Anteil noch mehr unterdrückt}$.

(11)   Welche Unterschiede ergeben sich bei einem Hochpass zweiter Ordnung gegenüber einem Tiefpass zweiter Ordnung $(f_0 = 1\ {\rm kHz})$.


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{???????????????}$



Zur Handhabung des Applets

Periodendauer fertig version1.png

    (A)     Parametereingabe per Slider

    (B)     Bereich der graphischen Darstellung

    (C)     Variationsmöglichkeit für die graphische Darstellung

    (D)     Abspeichern und Zurückholen von Parametersätzen

    (E)     Numerikausgabe des Hauptergebnisses $T_0$; graphische Verdeutlichung durch rote Linie

    (F)     Ausgabe von $x_{\rm max}$ und der Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$

    (G)     Darstellung der Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$ durch grüne Punkte

    (H)     Einstellung der Zeit $t_*$ für die Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$

Details zum obigen Punkt (C)

    (*)   Zoom–Funktionen „$+$” (Vergrößern), „$-$” (Verkleinern) und $\rm o$ (Zurücksetzen)

    (*)   Verschieben mit „$\leftarrow$” (Ausschnitt nach links, Ordinate nach rechts), „$\uparrow$” „$\downarrow$” und „$\rightarrow$”

Andere Möglichkeiten:

    (*)   Gedrückte Shifttaste und Scrollen: Zoomen im Koordinatensystem,

    (*)   Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems.


Über die Autoren

Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.

  • Die erste Version wurde 2005 von Bettina Hirner im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: Günter Söder ).
  • 2018 wurde dieses Programm von Jimmy He im Rahmen seiner Bachelorarbeit (Betreuer: Tasnád Kernetzky) auf „HTML5” umgesetzt und neu gestaltet.

Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster

Open Applet in new Tab