Difference between revisions of "Aufgaben:Exercise 2.15Z: Block Error Probability once more"

From LNTwww
m (Textersetzung - „* Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „“)
Line 1: Line 1:
 
{{quiz-Header|Buchseite=Kanalcodierung/Fehlerwahrscheinlichkeit und Anwendungsgebiete}}
 
{{quiz-Header|Buchseite=Kanalcodierung/Fehlerwahrscheinlichkeit und Anwendungsgebiete}}
  
[[File:P_ID2574__KC_Z_2_15.png|right|frame|Wahrscheinlichkeiten der Binominalverteilung]]
+
[[File:P_ID2574__KC_Z_2_15.png|right|frame|Binominal–Wahrscheinlichkeiten]]
Bei Verwendung eines Reed–Solomon–Codes mit der Korrekturfähigkeit $t$ und [[Kanalcodierung/Fehlerwahrscheinlichkeit_und_Anwendungsgebiete#Blockfehlerwahrscheinlichkeit_f.C3.BCr_RSC_und_BDD|Bounded Distance Decoding]] (BDD) erhält man mit
+
Bei Verwendung eines Reed–Solomon–Codes mit der Korrekturfähigkeit  $t$  und  [[Kanalcodierung/Fehlerwahrscheinlichkeit_und_Anwendungsgebiete#Blockfehlerwahrscheinlichkeit_f.C3.BCr_RSC_und_BDD|Bounded Distance Decoding]]  (BDD) erhält man mit
* der Codewortlänge $n$ und
+
* der Codewortlänge  $n$  und
* der Symbolverfälschungswahrscheinlichkeit $\epsilon_{\rm S}$
+
* der Symbolverfälschungswahrscheinlichkeit  $\varepsilon_{\rm S}$
  
  
Line 11: Line 11:
 
\sum_{f = t + 1}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} \hspace{0.05cm}.$$
 
\sum_{f = t + 1}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} \hspace{0.05cm}.$$
  
In dieser Aufgabe soll die Blockfehlerwahrscheinlichkeit für den $\rm RSC \, (7, \, 3, \, 5)_8$ und verschiedene $\epsilon_{\rm S}$–Werte berechnet und angenähert werden. Obige Gleichung erinnert an die [[Stochastische_Signaltheorie/Binomialverteilung|Biomialverteilung]]. Die Grafik zeigt die Wahrscheinlichkeiten der Binomialverteilung für die Parameter $n = 7$ (Codewortlänge) und $\epsilon_{\rm S} = 0.25$ (Symbolverfälschungswahrscheinlichkeit).
+
In dieser Aufgabe soll die Blockfehlerwahrscheinlichkeit für den  $\rm RSC \, (7, \, 3, \, 5)_8$  und verschiedene  $\varepsilon_{\rm S}$–Werte berechnet und angenähert werden.  
 +
 
 +
Obige Gleichung erinnert an die  [[Stochastische_Signaltheorie/Binomialverteilung|Biomialverteilung]]. Die Grafik zeigt die Wahrscheinlichkeiten der Binomialverteilung für die Parameter  $n = 7$  (Codewortlänge) und  $\varepsilon_{\rm S} = 0.25$  (Symbolverfälschungswahrscheinlichkeit).
 +
 
 +
 
 +
 
  
  
Line 18: Line 23:
  
 
''Hinweise:''
 
''Hinweise:''
* Die Aufgabe gehört zum Kapitel [[Kanalcodierung/Fehlerwahrscheinlichkeit_und_Anwendungsgebiete| Fehlerwahrscheinlichkeit und Anwendungsgebiete]].
+
* Die Aufgabe gehört zum Kapitel  [[Kanalcodierung/Fehlerwahrscheinlichkeit_und_Anwendungsgebiete| Fehlerwahrscheinlichkeit und Anwendungsgebiete]].
* Zur Kontrolle können Sie das  interaktive Applet [[Applets:Binomialverteilung_vs._Poissonverteilung]] benutzen.
+
* Zur Kontrolle können Sie das  interaktive Applet  [[Applets:Binomial-_und_Poissonverteilung_(Applet)|Binomial- und Poissonverteilung]]  benutzen.
  
  
Line 27: Line 32:
 
===Fragebogen===
 
===Fragebogen===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Blockfehlerwahrscheinlichkeit ergibt sich für $\varepsilon_{\rm S} = 10^{-1}$?
+
{Welche Blockfehlerwahrscheinlichkeit ergibt sich für&nbsp; $\varepsilon_{\rm S} = 10^{-1}$?
 
|type="{}"}
 
|type="{}"}
 
$\rm Pr(Blockfehler) \ = \ ${ 2.57 3% } $\ \cdot 10^{-2}$
 
$\rm Pr(Blockfehler) \ = \ ${ 2.57 3% } $\ \cdot 10^{-2}$
  
{Welche Blockfehlerwahrscheinlichkeit ergibt sich für $\varepsilon_{\rm S} =10^{-2}$?
+
{Welche Blockfehlerwahrscheinlichkeit ergibt sich für&nbsp; $\varepsilon_{\rm S} =10^{-2}$?
 
|type="{}"}
 
|type="{}"}
 
$\rm Pr(Blockfehler) \ = \ ${ 3.396 3% } $\ \cdot 10^{-5}$
 
$\rm Pr(Blockfehler) \ = \ ${ 3.396 3% } $\ \cdot 10^{-5}$
  
{Welches Ergebnis erhält man  für $\varepsilon_{\rm S} =10^{-2}$, wenn man nur den Term $f = t + 1$ berücksichtigt?
+
{Welches Ergebnis erhält man  für&nbsp; $\varepsilon_{\rm S} =10^{-2}$, wenn man nur den Term&nbsp; $f = t + 1$&nbsp; berücksichtigt?
 
|type="{}"}
 
|type="{}"}
 
$\rm Näherung \text{:} \hspace{0.2cm} Pr(Blockfehler) \ \approx \ ${ 3.362 3% } $\ \cdot 10^{-5}$
 
$\rm Näherung \text{:} \hspace{0.2cm} Pr(Blockfehler) \ \approx \ ${ 3.362 3% } $\ \cdot 10^{-5}$
  
{Welches Ergebnis erhält man näherungsweise für $\varepsilon_{\rm S} = 10^{-3}$?
+
{Welches Ergebnis erhält man näherungsweise für&nbsp; $\varepsilon_{\rm S} = 10^{-3}$?
 
|type="{}"}
 
|type="{}"}
$\rm Pr(Blockfehler) \ = \ ${ 3.49 3% } $\ \cdot 10^{-8}$
+
$\rm Pr(Blockfehler) \ \approx \ ${ 3.49 3% } $\ \cdot 10^{-8}$
  
{Welches $\varepsilon_{\rm S}$ benötigt man für die Blockfehlerwahrscheinlichkeit $10^{-10}$?
+
{Welches&nbsp; $\varepsilon_{\rm S}$&nbsp; benötigt man für die Blockfehlerwahrscheinlichkeit&nbsp; $10^{-10}$?
 
|type="{}"}
 
|type="{}"}
 
$\varepsilon_{\rm S} \ = \ ${ 1.42 3% } $\ \cdot 10^{-4}$
 
$\varepsilon_{\rm S} \ = \ ${ 1.42 3% } $\ \cdot 10^{-4}$

Revision as of 17:06, 30 May 2019

Binominal–Wahrscheinlichkeiten

Bei Verwendung eines Reed–Solomon–Codes mit der Korrekturfähigkeit  $t$  und  Bounded Distance Decoding  (BDD) erhält man mit

  • der Codewortlänge  $n$  und
  • der Symbolverfälschungswahrscheinlichkeit  $\varepsilon_{\rm S}$


für die Blockfehlerwahrscheinlichkeit:

$${\rm Pr(Blockfehler)} = \sum_{f = t + 1}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} \hspace{0.05cm}.$$

In dieser Aufgabe soll die Blockfehlerwahrscheinlichkeit für den  $\rm RSC \, (7, \, 3, \, 5)_8$  und verschiedene  $\varepsilon_{\rm S}$–Werte berechnet und angenähert werden.

Obige Gleichung erinnert an die  Biomialverteilung. Die Grafik zeigt die Wahrscheinlichkeiten der Binomialverteilung für die Parameter  $n = 7$  (Codewortlänge) und  $\varepsilon_{\rm S} = 0.25$  (Symbolverfälschungswahrscheinlichkeit).





Hinweise:



Fragebogen

1

Welche Blockfehlerwahrscheinlichkeit ergibt sich für  $\varepsilon_{\rm S} = 10^{-1}$?

$\rm Pr(Blockfehler) \ = \ $

$\ \cdot 10^{-2}$

2

Welche Blockfehlerwahrscheinlichkeit ergibt sich für  $\varepsilon_{\rm S} =10^{-2}$?

$\rm Pr(Blockfehler) \ = \ $

$\ \cdot 10^{-5}$

3

Welches Ergebnis erhält man für  $\varepsilon_{\rm S} =10^{-2}$, wenn man nur den Term  $f = t + 1$  berücksichtigt?

$\rm Näherung \text{:} \hspace{0.2cm} Pr(Blockfehler) \ \approx \ $

$\ \cdot 10^{-5}$

4

Welches Ergebnis erhält man näherungsweise für  $\varepsilon_{\rm S} = 10^{-3}$?

$\rm Pr(Blockfehler) \ \approx \ $

$\ \cdot 10^{-8}$

5

Welches  $\varepsilon_{\rm S}$  benötigt man für die Blockfehlerwahrscheinlichkeit  $10^{-10}$?

$\varepsilon_{\rm S} \ = \ $

$\ \cdot 10^{-4}$


Musterlösung

(1)  Für den $\rm RSC \, (7, \, 3, \, 5)_8$ ergibt sich wegen $d_{\rm min} = 5 \ \Rightarrow \ t = 2$ für die Blockfehlerwahrscheinlichkeit:

$${\rm Pr(Blockfehler)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \sum_{f = 3}^{7} {7 \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{7-f} $$
$$\Rightarrow \hspace{0.3cm}{\rm Pr(Blockfehler)} ={7 \choose 3} \cdot 0.1^3 \cdot 0.9^4 + {7 \choose 4} \cdot 0.1^4 \cdot 0.9^3 + {7 \choose 5} \cdot 0.1^5 \cdot 0.9^2+ {7 \choose 6} \cdot 0.1^6 \cdot 0.9+ {7 \choose 7} \cdot 0.1^7 \hspace{0.05cm}.$$

Nach dieser Berechnung müssten fünf Terme berücksichtigt werden. Da aber auch

$${\rm Pr(Blockfehler)} = \sum_{f = 0}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} = 1$$

gilt, kommt man über den nachfolgenden Rechenweg schneller zum Erfolg:

$${\rm Pr(Blockfehler)} =1 - \big [ {7 \choose 0} \cdot 0.9^7 + {7 \choose 1} \cdot 0.1 \cdot 0.9^6 + {7 \choose 2} \cdot 0.1^2 \cdot 0.9^5 \big ] =1 - \big [ 0.4783 + 0.3720 + 0.1240 \big ] \hspace{0.15cm} \underline{= 2.57 \cdot 10^{-2}} \hspace{0.05cm}.$$


(2)  Analog zur Teilaufgabe (1) erhält man hier:

$${\rm Pr(Blockfehler)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - \big [ 0.99^7 + 7 \cdot 0.01 \cdot 0.99^6 + 21 \cdot 0.01^2 \cdot 0.99^5 \big ] =1 - \big [ 0.9321 + 0.0659 + 0.0020 \big ] \approx 0 \hspace{0.05cm}.$$

Das bedeutet: Für die Wahrscheinlichkeit $\varepsilon_{\rm S} = 0.01$ ist die vereinfachte Rechnung sehr fehleranfällig, weil sich für den Klammerausdruck ein Wert nahezu $1$ ergibt. Die vollständige Rechnung ergibt hier:

$${\rm Pr(Blockfehler)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {7 \choose 3} \cdot 0.01^3 \cdot 0.99^4 + {7 \choose 4} \cdot 0.01^4 \cdot 0.99^3 + {7 \choose 5} \cdot 0.01^5 \cdot 0.99^2+ {7 \choose 6} \cdot 0.01^6 \cdot 0.99+ {7 \choose 7} \cdot 0.01^7 $$
$$\Rightarrow \hspace{0.3cm}{\rm Pr(Blockfehler)}= 10^{-6} \cdot \big [ 33.6209 + 0.3396 + 0.0021 + ... \big ] \hspace{0.15cm} \underline{ \approx 3.396 \cdot 10^{-5}} \hspace{0.05cm}.$$


(3)  Aus der Musterlösung zur Teilaufgabe (2) kann das Ergebnis direkt abgelesen werden:

$${\rm Pr(Blockfehler)} \hspace{0.15cm} \underline{ \approx 3.362 \cdot 10^{-5}} \hspace{0.05cm}.$$
  • Der relative Fehler beträgt ca. $-1\%$.
  • Das Minuszeichen zeigt an, dass es sich hier nur um eine Näherung handelt und nicht um eine Schranke: Der Näherungswert ist etwas kleiner als der tatsächliche Wert.


(4)  Beschränkt man sich auf den relevanten Term $(f = 3)$, so ergibt sich für $\varepsilon_{\rm S} = 0.001$:

$${\rm Pr(Blockfehler)} \approx {7 \choose 3} \cdot [10^{-3}]^3 \cdot 0.999^4 \hspace{0.15cm} \underline{ \approx 3.49 \cdot 10^{-8}} \hspace{0.05cm}.$$

Der relative Fehler beträgt hier nur noch etwa $-0.1\%$.


(5)  Entsprechend der hergeleiteten Näherung gilt für den betrachteten Code:

$${\rm Pr(Blockfehler)} \approx {7 \choose 3} \cdot {\varepsilon_{\rm S}}^3 = 35 \cdot {\varepsilon_{\rm S}}^3\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr(Blockfehler)} = 10^{-10}: \hspace{0.4cm} {\varepsilon_{\rm S}} = \big ( \frac{10^{-10}}{35} \big )^{1/3} = 2.857^{1/3} \cdot 10^{-4} \hspace{0.15cm} \underline{ \approx 1.42 \cdot 10^{-4}}\hspace{0.05cm}.$$