Difference between revisions of "Aufgaben:Exercise 1.10Z: Gaussian Band-Pass"

From LNTwww
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Line 9: Line 9:
  
  
Bei trägerfrequenzmodulierter Übertragung muss der Kanalfrequenzgang $H_{\rm K}(f)$ stets als Bandpass angesetzt werden. Die Kanalparameter sind zum Beispiel die Mittenfrequenz $f_{\rm M}$ und die Bandbreite $\Delta f_{\rm K}$, wobei die Mittenfrequenz $f_{\rm M}$ oft mit der Trägerfrequenz $f_{\rm T}$ übereinstimmt.  
+
Bei trägerfrequenzmodulierter Übertragung muss der Kanalfrequenzgang  $H_{\rm K}(f)$  stets als Bandpass angesetzt werden. Die Kanalparameter sind zum Beispiel die Mittenfrequenz  $f_{\rm M}$  und die Bandbreite  $\Delta f_{\rm K}$, wobei die Mittenfrequenz  $f_{\rm M}$  oft mit der Trägerfrequenz  $f_{\rm T}$  übereinstimmt.  
  
 
In dieser Aufgabe soll insbesondere von einem Gaußbandpass entsprechend der Grafik ausgegangen werden. Für dessen Frequenzgang gilt:
 
In dieser Aufgabe soll insbesondere von einem Gaußbandpass entsprechend der Grafik ausgegangen werden. Für dessen Frequenzgang gilt:
Line 15: Line 15:
 
  +{\rm exp} \left [ - \pi \cdot \left ( \frac {f + f_{\rm M} }{\Delta f_{\rm K}}\right )^2 \right ]$$
 
  +{\rm exp} \left [ - \pi \cdot \left ( \frac {f + f_{\rm M} }{\Delta f_{\rm K}}\right )^2 \right ]$$
  
Zur einfacheren Beschreibung benutzt man oft den äquivalenten TP–Frequenzgang $H_{\rm K,TP}(f)$. Dieser ergibt sich aus $H_{\rm K}(f)$ durch
+
Zur einfacheren Beschreibung benutzt man oft den äquivalenten TP–Frequenzgang  $H_{\rm K,TP}(f)$. Dieser ergibt sich aus  $H_{\rm K}(f)$  durch
 
*Abschneiden der Anteile bei negativen Frequenzen,
 
*Abschneiden der Anteile bei negativen Frequenzen,
*Verschieben des Spektrums um $f_{\rm T}$  nach links.
+
*Verschieben des Spektrums um  $f_{\rm T}$  nach links.
  
Im betrachteten Beispiel ergibt sich mit $f_{\rm T} = f_{\rm M}$ für den äquivalenten TP–Frequenzgang:
+
Im betrachteten Beispiel ergibt sich mit  $f_{\rm T} = f_{\rm M}$  für den äquivalenten TP–Frequenzgang:
 
:$$ H_{\rm K,\hspace{0.04cm} TP}(f) = {\rm e}^ { - \pi \hspace{0.04cm}\cdot \hspace{0.04cm}\left ( {f }/{\Delta f_{\rm K}}\right )^2 }.$$
 
:$$ H_{\rm K,\hspace{0.04cm} TP}(f) = {\rm e}^ { - \pi \hspace{0.04cm}\cdot \hspace{0.04cm}\left ( {f }/{\Delta f_{\rm K}}\right )^2 }.$$
Die entsprechende Zeitfunktion (Fouruerrücktransformierte) lautet:
+
Die entsprechende Zeitfunktion (Fourierrücktransformierte) lautet:
 
:$$ h_{\rm K,\hspace{0.04cm} TP}(t) = \Delta f_{\rm K} \cdot {\rm e}^ { - \pi \hspace{0.04cm}\cdot \hspace{0.04cm}\left ( {\Delta f_{\rm K}} \cdot t \right )^2 }.$$
 
:$$ h_{\rm K,\hspace{0.04cm} TP}(t) = \Delta f_{\rm K} \cdot {\rm e}^ { - \pi \hspace{0.04cm}\cdot \hspace{0.04cm}\left ( {\Delta f_{\rm K}} \cdot t \right )^2 }.$$
 
Zur Beschreibung eines phasensynchronen BPSK–Systems im Tiefpassbereich eignet sich aber auch der Frequenzgang
 
Zur Beschreibung eines phasensynchronen BPSK–Systems im Tiefpassbereich eignet sich aber auch der Frequenzgang
 
:$$H_{\rm MKD}(f) = {1}/{2} \cdot \left [ H_{\rm K}(f-f_{\rm T}) + H_{\rm K}(f+f_{\rm T})\right ] ,$$
 
:$$H_{\rm MKD}(f) = {1}/{2} \cdot \left [ H_{\rm K}(f-f_{\rm T}) + H_{\rm K}(f+f_{\rm T})\right ] ,$$
wobei „MKD” für Modulator – Kanal – Demodulator steht. Häufig – aber nicht immer – sind $H_{\rm MKD}(f)$ und $H_{\rm K,TP}(f)$ identisch.
+
wobei „MKD” für Modulator – Kanal – Demodulator steht. Häufig – aber nicht immer – sind  $H_{\rm MKD}(f)$  und  $H_{\rm K,TP}(f)$  identisch.
 +
 
 +
 
 +
 
  
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel  [[Digitalsignalübertragung/Lineare_digitale_Modulation_–_Kohärente_Demodulation|Lineare digitale Modulation – Kohärente Demodulation]].
+
*Die Aufgabe gehört zum  Kapitel  [[Digitalsignalübertragung/Lineare_digitale_Modulation_–_Kohärente_Demodulation|Lineare digitale Modulation – Kohärente Demodulation]].
*Bezug genommen wird insbesondere auf die Seite [[Digitalsignalübertragung/Lineare_digitale_Modulation_–_Kohärente_Demodulation#Basisbandmodell_f.C3.BCr_ASK_und_BPSK|Basisbandmodell für ASK und BPSK]].  
+
*Bezug genommen wird insbesondere auf die Seite  [[Digitalsignalübertragung/Lineare_digitale_Modulation_–_Kohärente_Demodulation#Basisbandmodell_f.C3.BCr_ASK_und_BPSK|Basisbandmodell für ASK und BPSK]].  
 
   
 
   
  
Line 38: Line 41:
 
<quiz display=simple>
 
<quiz display=simple>
  
{Geben Sie die Impulsantwort $h_{\rm K}(t)$ des Gauß–Bandpasskanals an. Welcher (normierte) Wert ergibt sich für den Zeitpunkt $t = 0$?
+
{Geben Sie die Impulsantwort &nbsp;$h_{\rm K}(t)$&nbsp; des Gauß–Bandpasskanals an. Welcher (normierte) Wert ergibt sich für den Zeitpunkt &nbsp;$t = 0$?
 
|type="{}"}
 
|type="{}"}
 
$ h_{\rm K}(t)/\Delta f_{\rm K} \  =  \ $ { 2 3% }
 
$ h_{\rm K}(t)/\Delta f_{\rm K} \  =  \ $ { 2 3% }
  
  
{Welche Aussagen gelten unter der Voraussetzung $f_{\rm T} = f_{\rm M}$?
+
{Welche Aussagen gelten unter der Voraussetzung &nbsp;$f_{\rm T} = f_{\rm M}$?
 
|type="[]"}
 
|type="[]"}
-$H_{\rm K,TP}(f)$ und $H_{\rm MKD}(f)$ stimmen vollständig überein.
+
-$H_{\rm K,TP}(f)$&nbsp; und &nbsp;$H_{\rm MKD}(f)$&nbsp; stimmen vollständig überein.
+$H_{\rm K,TP}(f)$ und $H_{\rm MKD}(f)$ sind für tiefe Frequenzen gleich.
+
+$H_{\rm K,TP}(f)$&nbsp; und &nbsp;$H_{\rm MKD}(f)$&nbsp; sind für tiefe Frequenzen gleich.
+Die Zeitfunktion $h_{\rm K,TP}(t)$ ist reell.
+
+Die Zeitfunktion &nbsp;$h_{\rm K,TP}(t)$&nbsp; ist reell.
+Die Zeitfunktion $h_{\rm MKD}(t)$ ist reell.
+
+Die Zeitfunktion &nbsp;$h_{\rm MKD}(t)$&nbsp; ist reell.
  
 
{Welche Aussagen gelten unter der Voraussetzung $f_{\rm T} \neq f_{\rm M}$?
 
{Welche Aussagen gelten unter der Voraussetzung $f_{\rm T} \neq f_{\rm M}$?
 
|type="[]"}
 
|type="[]"}
-$H_{\rm K,TP}(f)$ und $H_{\rm MKD}(f)$ stimmen vollständig überein.
+
-$H_{\rm K,TP}(f)$&nbsp; und &nbsp;$H_{\rm MKD}(f)$&nbsp; stimmen vollständig überein.
-$H_{\rm K,TP}(f)$ und $H_{\rm MKD}(f)$ sind für tiefe Frequenzen gleich.
+
-$H_{\rm K,TP}(f)$&nbsp; und &nbsp;$H_{\rm MKD}(f)$&nbsp; sind für tiefe Frequenzen gleich.
-Die Zeitfunktion $h_{\rm K,TP}(t)$ ist reell.
+
-Die Zeitfunktion &nbsp;$h_{\rm K,TP}(t)$&nbsp; ist reell.
+Die Zeitfunktion $h_{\rm MKD}(t)$ ist reell.
+
+Die Zeitfunktion &nbsp;$h_{\rm MKD}(t)$&nbsp; ist reell.
  
 
{Was sollte im Hinblick auf eine kleinere Bitfehlerwahrscheinlichkeit gelten?
 
{Was sollte im Hinblick auf eine kleinere Bitfehlerwahrscheinlichkeit gelten?
|type="[]"}
+
|type="()"}
 
+$f_{\rm M} = f_{\rm T}$,
 
+$f_{\rm M} = f_{\rm T}$,
 
- $f_{\rm M} \neq f_{\rm T}$.
 
- $f_{\rm M} \neq f_{\rm T}$.

Revision as of 16:06, 7 February 2019

Gaußförmiger Bandpasskanal

Für diese Aufgabe setzen wir voraus:

  • Zur Modulation wird binäre Phasenmodulation (BPSK) verwendet.
  • Die Demodulation erfolgt frequenz– und phasensynchron.


Bei trägerfrequenzmodulierter Übertragung muss der Kanalfrequenzgang  $H_{\rm K}(f)$  stets als Bandpass angesetzt werden. Die Kanalparameter sind zum Beispiel die Mittenfrequenz  $f_{\rm M}$  und die Bandbreite  $\Delta f_{\rm K}$, wobei die Mittenfrequenz  $f_{\rm M}$  oft mit der Trägerfrequenz  $f_{\rm T}$  übereinstimmt.

In dieser Aufgabe soll insbesondere von einem Gaußbandpass entsprechend der Grafik ausgegangen werden. Für dessen Frequenzgang gilt:

$$H_{\rm K}(f) = {\rm exp} \left [ - \pi \cdot \left ( \frac {f - f_{\rm M} }{\Delta f_{\rm K}}\right )^2 \right ] +{\rm exp} \left [ - \pi \cdot \left ( \frac {f + f_{\rm M} }{\Delta f_{\rm K}}\right )^2 \right ]$$

Zur einfacheren Beschreibung benutzt man oft den äquivalenten TP–Frequenzgang  $H_{\rm K,TP}(f)$. Dieser ergibt sich aus  $H_{\rm K}(f)$  durch

  • Abschneiden der Anteile bei negativen Frequenzen,
  • Verschieben des Spektrums um  $f_{\rm T}$  nach links.

Im betrachteten Beispiel ergibt sich mit  $f_{\rm T} = f_{\rm M}$  für den äquivalenten TP–Frequenzgang:

$$ H_{\rm K,\hspace{0.04cm} TP}(f) = {\rm e}^ { - \pi \hspace{0.04cm}\cdot \hspace{0.04cm}\left ( {f }/{\Delta f_{\rm K}}\right )^2 }.$$

Die entsprechende Zeitfunktion (Fourierrücktransformierte) lautet:

$$ h_{\rm K,\hspace{0.04cm} TP}(t) = \Delta f_{\rm K} \cdot {\rm e}^ { - \pi \hspace{0.04cm}\cdot \hspace{0.04cm}\left ( {\Delta f_{\rm K}} \cdot t \right )^2 }.$$

Zur Beschreibung eines phasensynchronen BPSK–Systems im Tiefpassbereich eignet sich aber auch der Frequenzgang

$$H_{\rm MKD}(f) = {1}/{2} \cdot \left [ H_{\rm K}(f-f_{\rm T}) + H_{\rm K}(f+f_{\rm T})\right ] ,$$

wobei „MKD” für Modulator – Kanal – Demodulator steht. Häufig – aber nicht immer – sind  $H_{\rm MKD}(f)$  und  $H_{\rm K,TP}(f)$  identisch.



Hinweise:


Fragebogen

1

Geben Sie die Impulsantwort  $h_{\rm K}(t)$  des Gauß–Bandpasskanals an. Welcher (normierte) Wert ergibt sich für den Zeitpunkt  $t = 0$?

$ h_{\rm K}(t)/\Delta f_{\rm K} \ = \ $

2

Welche Aussagen gelten unter der Voraussetzung  $f_{\rm T} = f_{\rm M}$?

$H_{\rm K,TP}(f)$  und  $H_{\rm MKD}(f)$  stimmen vollständig überein.
$H_{\rm K,TP}(f)$  und  $H_{\rm MKD}(f)$  sind für tiefe Frequenzen gleich.
Die Zeitfunktion  $h_{\rm K,TP}(t)$  ist reell.
Die Zeitfunktion  $h_{\rm MKD}(t)$  ist reell.

3

Welche Aussagen gelten unter der Voraussetzung $f_{\rm T} \neq f_{\rm M}$?

$H_{\rm K,TP}(f)$  und  $H_{\rm MKD}(f)$  stimmen vollständig überein.
$H_{\rm K,TP}(f)$  und  $H_{\rm MKD}(f)$  sind für tiefe Frequenzen gleich.
Die Zeitfunktion  $h_{\rm K,TP}(t)$  ist reell.
Die Zeitfunktion  $h_{\rm MKD}(t)$  ist reell.

4

Was sollte im Hinblick auf eine kleinere Bitfehlerwahrscheinlichkeit gelten?

$f_{\rm M} = f_{\rm T}$,
$f_{\rm M} \neq f_{\rm T}$.


Musterlösung

(1)  Für den Bandpass–Frequenzgang $H_{\rm K}(f)$ kann geschrieben werden:

$$H_{\rm K}(f) = H_{\rm K,\hspace{0.04cm} TP}(f) \star \left [ \delta (f - f_{\rm M}) + \delta (f + f_{\rm M}) \right ] .$$

Die Fourierrücktransformierte des Klammerausdrucks liefert eine Cosinusfunktion der Frequenz $f_{\rm M}$ mit der Amplitude $2$. Nach dem Faltungssatz gilt somit:

$$h_{\rm K}(t) = 2 \cdot \Delta f_{\rm K} \cdot {\rm exp} \left [ - \pi \cdot \left ( {\Delta f_{\rm K}} \cdot t \right )^2 \right ] \cdot \cos(2 \pi f_{\rm M} t ) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}h_{\rm K}(t = 0)/\Delta f_{\rm K} \hspace{0.1cm}\underline {= 2}.$$

Das heißt: Die TP–Impulsantwort $h_{\rm K,\hspace{0.04cm}TP}(t)$ ist formgleich mit der Hüllkurve der BP–Impulsantwort $h_{\rm K}(t)$, aber doppelt so groß.

(2)  Richtig sind die Aussagen 2, 3 und 4:

  • Die erste Aussage ist falsch, da $H_{\rm MKD}(f)$ auch Anteile um $\pm 2f_{\rm T}$ besitzt.
  • Die Zeitfunktion $h_{\rm K,\hspace{0.04cm}TP}(t)$ ist entsprechend der angegebenen Gleichung reell.
  • Gleiches gilt für $h_{\rm MKD}(t)$ auch unter Berücksichtigung der $\pm 2f_{\rm T}$–Anteile, da $H_{\rm MKD}(f)$ eine bezüglich $f = 0$ gerade Funktion ist.
  • Die Grafik zeigt $H_{\rm MKD}(f)$, der auch Anteile um $\pm 2f_{\rm T}$ besitzt. Bei tiefen Frequenzen ist $H_{\rm K,\hspace{0.04cm}TP}(f)$ identisch mit $H_{\rm MKD}(f)$.


Resultierender Basisbandfrequenzgang für $f_{\rm M} = f_{\rm T}$

(3)  Richtig ist nur der Lösungsvorschlag 4:

  • Hier unterscheiden sich $H_{\rm K,\hspace{0.04cm}TP}(f)$ und $H_{\rm MKD}(f)$ auch bei den tiefen Frequenzen.
  • $H_{\rm K,\hspace{0.04cm}TP}(f)$ ist eine Gaußfunktion mit dem Maximum bei $f_{ε} = f_{\rm M} – f_{\rm T}$.
  • Aufgrund dieser Unsymmetrie ist $h_{\rm K,\hspace{0.04cm}TP}(t)$ komplex.
  • Dagegen ist $H_{\rm MKD}(f)$ weiterhin eine bezüglich $f = 0$ gerade Funktion mit reeller Impulsantwort $h_{\rm MKD}(t)$. $H_{\rm MKD}(f)$ setzt sich aus zwei Gaußfunktionen bei $± f_ε$ zusammen.


Resultierender Basisbandfrequenzgangfür $f_{\rm M} \ne f_{\rm T}$

(4)  Richtig ist natürlich die erste Antwort.