Difference between revisions of "Aufgaben:Exercise 3.2Z: Sinc-Squared Spectrum with Diracs"

From LNTwww
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID496__Sig_Z_3_2_neu.png|right|frame|si-Quadrat-Spektrum mit Diracs]]
+
[[File:P_ID496__Sig_Z_3_2_neu.png|right|frame|$\rm si$-Quadrat-Spektrum mit Diracs]]
 
Das skizzierte Spektrum ${X(f)}$ eines Zeitsignals ${x(t)}$ setzt sich zusammen aus
 
Das skizzierte Spektrum ${X(f)}$ eines Zeitsignals ${x(t)}$ setzt sich zusammen aus
  
Line 11: Line 11:
  
  
Der kontinuierliche Anteil lautet mit $f_0 = 200\, \text{kHz}$ und $X_0 = 10^{–5} \text{V/Hz}$:
+
Der kontinuierliche Anteil lautet mit $f_0 = 200\, \text{kHz}$ und $X_0 = 10^{–5} \text{ V/Hz}$:
 
:$$X_1( f ) = X_0  \cdot {\mathop{\rm si}\nolimits} ^2 ( {\pi {f}/{f_0}} ),\quad {\rm wobei}\quad {\mathop{\rm si}\nolimits} (x) = {\sin (x)}/{x}.$$
 
:$$X_1( f ) = X_0  \cdot {\mathop{\rm si}\nolimits} ^2 ( {\pi {f}/{f_0}} ),\quad {\rm wobei}\quad {\mathop{\rm si}\nolimits} (x) = {\sin (x)}/{x}.$$
 
Die Spektrallinie bei $f = 0$ hat das Gewicht $–\hspace{-0.08cm}1\,\text{V}$. Daneben gibt es noch zwei Linien bei den Frequenzen $\pm f_0$, beide mit dem Gewicht $0.5\,\text{V}$.
 
Die Spektrallinie bei $f = 0$ hat das Gewicht $–\hspace{-0.08cm}1\,\text{V}$. Daneben gibt es noch zwei Linien bei den Frequenzen $\pm f_0$, beide mit dem Gewicht $0.5\,\text{V}$.
Line 19: Line 19:
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum Kapitel [[Signaldarstellung/Fouriertransformation_und_-rücktransformation|Fouriertransformation und -rücktransformation]].
+
*Die Aufgabe gehört zum Kapitel [[Signaldarstellung/Fouriertransformation_und_-rücktransformation|Fouriertransformation und –rücktransformation]].
 
*Weitere Informationen zu dieser Thematik liefert das Lernvideo [[Kontinuierliche_und_diskrete_Spektren_(Lernvideo)|Kontinuierliche und diskrete Spektren]].
 
*Weitere Informationen zu dieser Thematik liefert das Lernvideo [[Kontinuierliche_und_diskrete_Spektren_(Lernvideo)|Kontinuierliche und diskrete Spektren]].
 
   
 
   
Line 32: Line 32:
 
|type="{}"}
 
|type="{}"}
 
$A\ = \ $ { 2 3% }  $\text{V}$
 
$A\ = \ $ { 2 3% }  $\text{V}$
$T\ = \ $ { 5 3% }  $\text{$\mu$s}$
+
$T\ = \ $ { 5 3% }  $\text{$µ$s}$
  
  
Line 56: Line 56:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
[[File:P_ID498__Sig_Z_3_2_a_neu.png|right|frame|Dreieckimpuls]]
+
[[File:P_ID498__Sig_Z_3_2_a_neu.png|right|frame|Fläche des Dreieckimpulses]]
'''(1)'''   Die einseitige Dauer des symmetrischen Dreieckimpulses beträgt $T = 1/f_0\hspace{0.15 cm}\underline{ = 5 \,{\rm \mu s}}$.  
+
'''(1)'''   Die einseitige Dauer des symmetrischen Dreieckimpulses beträgt $T = 1/f_0\hspace{0.15 cm}\underline{ = 5 \,{\rm µ s}}$.  
  
 
Der Spektralwert $X_0 = X_1(f = 0)$ gibt die Impulsfläche von $x_1(t)$ an. Diese ist gleich ${A} \cdot {T}$. Daraus folgt:
 
Der Spektralwert $X_0 = X_1(f = 0)$ gibt die Impulsfläche von $x_1(t)$ an. Diese ist gleich ${A} \cdot {T}$. Daraus folgt:

Revision as of 16:07, 23 July 2018

$\rm si$-Quadrat-Spektrum mit Diracs

Das skizzierte Spektrum ${X(f)}$ eines Zeitsignals ${x(t)}$ setzt sich zusammen aus

  • einem kontinuierlichen Anteil $X_1(f)$,
  • dazu drei diracförmigen Spektrallinien.


Der kontinuierliche Anteil lautet mit $f_0 = 200\, \text{kHz}$ und $X_0 = 10^{–5} \text{ V/Hz}$:

$$X_1( f ) = X_0 \cdot {\mathop{\rm si}\nolimits} ^2 ( {\pi {f}/{f_0}} ),\quad {\rm wobei}\quad {\mathop{\rm si}\nolimits} (x) = {\sin (x)}/{x}.$$

Die Spektrallinie bei $f = 0$ hat das Gewicht $–\hspace{-0.08cm}1\,\text{V}$. Daneben gibt es noch zwei Linien bei den Frequenzen $\pm f_0$, beide mit dem Gewicht $0.5\,\text{V}$.



Hinweise:

  • Als bekannt vorausgesetzt werden kann, dass ein um $t = 0$ symmetrischer Dreieckimpuls $y(t)$ mit der Amplitude ${A}$ und der absoluten Dauer $2T$ (das heißt: die Signalwerte sind nur zwischen $–T$ und $+T$ ungleich $0$) folgende Spektralfunktion besitzt:
$$Y( f ) = A \cdot T \cdot {\rm si}^2 ( \pi f T ).$$


Fragebogen

1

Welche Werte besitzen die Parameter ${A}$ (Amplitude) und ${T}$ (einseitige Dauer) des dreieckförmigen Signalanteils $x_1(t)$?

$A\ = \ $

 $\text{V}$
$T\ = \ $

 $\text{$µ$s}$

2

Wie groß ist der Gleichsignalanteil ${B}$ des Signals?

$B\ = \ $

 $\text{V}$

3

Wie groß ist die Amplitude $C$ des periodischen Anteils von $x(t)$?

$C\ = \ $

 $\text{V}$

4

Wie groß sind der Maximalwert und der Minimalwert des Signals $x(t)$?

$x_\text{max}\ = \ $

 $\text{V}$
$x_\text{min}\hspace{0.2cm} = \ $

 $\text{V}$


Musterlösung

Fläche des Dreieckimpulses

(1)  Die einseitige Dauer des symmetrischen Dreieckimpulses beträgt $T = 1/f_0\hspace{0.15 cm}\underline{ = 5 \,{\rm µ s}}$.

Der Spektralwert $X_0 = X_1(f = 0)$ gibt die Impulsfläche von $x_1(t)$ an. Diese ist gleich ${A} \cdot {T}$. Daraus folgt:

$$A = \frac{X_0 }{T} = \frac{ 10^{-5}\rm V/Hz }{5 \cdot 10^{-6}{\rm s}}\hspace{0.15 cm}\underline{= 2\;{\rm V}}.$$

(2)  Der Gleichsignalanteil ist durch das Diracgewicht bei $f = 0$ gegeben. Man erhält ${B} \hspace{0.15 cm}\underline{= -1 \,\text{V}}$.

(3)  Die beiden Spektrallinien bei $\pm f_0$ ergeben zusammen ein Cosinussignal mit der Amplitude ${C} \hspace{0.15 cm}\underline{= 1 \text{V}}$.

(4)  Der Maximalwert tritt zum Zeitpunkt ${t} = 0$ auf (hier sind Dreieckimpuls und Cosinussignal maximal):

$$x_{\text{max}} = A + B + C \hspace{0.15 cm}\underline{= +2 \text{V}}.$$

Die minimalen Werte von ${x(t)}$ ergeben sich dann, wenn der Dreieckimpuls abgeklungen ist und die Cosinusfunktion den Wert $–\hspace{-0.08 cm}1 \,\text{V}$ liefert:

$$x_\text{min} = {B} - {C}\hspace{0.15 cm}\underline{ = -2\, \text{V}}.$$