Difference between revisions of "Aufgaben:Exercise 4.7Z: Generation of a Joint PDF"
m (Textersetzung - „\*\s*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0\.” ein.“ durch „ “) |
|||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID423__Sto_Z_4_7.png|right|Vorgaben zur Erzeugung einer 2D-Zufallsgröße]] | + | [[File:P_ID423__Sto_Z_4_7.png|right|frame|Vorgaben zur Erzeugung einer <br>2D-Zufallsgröße]] |
− | Ausgehend von statistisch unabhängigen Größen $u$ und $v$ die beide zwischen $-1$ und $+1$ gleichverteilt sind und somit jeweils die Varianz $\sigma^2 = 2/3$ besitzen, soll eine 2D-Zufallsgröße $(x, y)$ generiert werden, wobei für die Komponenten gilt: | + | Ausgehend von statistisch unabhängigen Größen $u$ und $v$, die beide zwischen $-1$ und $+1$ gleichverteilt sind und somit jeweils die Varianz $\sigma^2 = 2/3$ besitzen, soll eine 2D-Zufallsgröße $(x, y)$ generiert werden, wobei für die Komponenten gilt: |
:$$x = A \cdot u + B \cdot v + C,$$ | :$$x = A \cdot u + B \cdot v + C,$$ | ||
:$$y= D \cdot u + E \cdot v + F.$$ | :$$y= D \cdot u + E \cdot v + F.$$ | ||
Line 10: | Line 10: | ||
Die zu erzeugende 2D–Zufallsgröße $(x, y)$ soll die folgenden statistischen Eigenschaften aufweisen: | Die zu erzeugende 2D–Zufallsgröße $(x, y)$ soll die folgenden statistischen Eigenschaften aufweisen: | ||
* Die Varianzen seien $\sigma_x^2 = 4$ und $\sigma_y^2 = 10$. | * Die Varianzen seien $\sigma_x^2 = 4$ und $\sigma_y^2 = 10$. | ||
− | * Die Zufallsgröße $x$ sei mittelwertfrei $(m_x =0)$. | + | * Die Zufallsgröße $x$ sei mittelwertfrei $(m_x =0)$. |
− | * Für den Mittelwert von $y$ gelte $m_y = 1$. | + | * Für den Mittelwert von $y$ gelte $m_y = 1$. |
− | * Der Korrelationskoeffizient zwischen $x$ und $y$ betrage $\rho_{xy} = \sqrt{0.9} = 0.949.$ | + | * Der Korrelationskoeffizient zwischen $x$ und $y$ betrage $\rho_{xy} = \sqrt{0.9} = 0.949.$ |
− | * Die Zufallsgröße $x$ besitze eine dreieckförmige WDF $f_x(x)$ entsprechend der oberen Grafik. | + | * Die Zufallsgröße $x$ besitze eine dreieckförmige WDF $f_x(x)$ entsprechend der oberen Grafik. |
− | * Die Zufallsgröße $y$ besitze eine trapezförmige WDF $f_y(y)$ entsprechend der unteren Grafik. | + | * Die Zufallsgröße $y$ besitze eine trapezförmige WDF $f_y(y)$ entsprechend der unteren Grafik. |
+ | |||
+ | |||
+ | |||
Line 20: | Line 23: | ||
*Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Linearkombinationen_von_Zufallsgrößen|Linearkombinationen von Zufallsgrößen]]. | *Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Linearkombinationen_von_Zufallsgrößen|Linearkombinationen von Zufallsgrößen]]. | ||
*Insbesondere wird Bezug genommen auf die Seite [[Stochastische_Signaltheorie/Linearkombinationen_von_Zufallsgrößen#Erzeugung_korrelierter_Zufallsgr.C3.B6.C3.9Fen|Erzeugung korrelierter Zufallsgrößen]]. | *Insbesondere wird Bezug genommen auf die Seite [[Stochastische_Signaltheorie/Linearkombinationen_von_Zufallsgrößen#Erzeugung_korrelierter_Zufallsgr.C3.B6.C3.9Fen|Erzeugung korrelierter Zufallsgrößen]]. | ||
− | *Um Mehrdeutigkeiten zu vermeiden wird festgelegt, dass alle Koeffizienten $A$, | + | *Um Mehrdeutigkeiten zu vermeiden wird festgelegt, dass alle Koeffizienten $A$, ... , $F$ nicht negativ sein sollen. |
Line 29: | Line 32: | ||
{Bestimmen Sie die Koeffizienten $C$ und $F$. | {Bestimmen Sie die Koeffizienten $C$ und $F$. | ||
|type="{}"} | |type="{}"} | ||
− | $C \ = $ { 0. } | + | $C \ = \ $ { 0. } |
− | $F\ = $ { 1 3% } | + | $F\ = \ $ { 1 3% } |
{Bestimmen Sie die Koeffizienten $A$ und $B$. | {Bestimmen Sie die Koeffizienten $A$ und $B$. | ||
|type="{}"} | |type="{}"} | ||
− | $A \ = $ { 1.732 3% } | + | $A \ = \ $ { 1.732 3% } |
− | $B \ = $ { 1.732 3% } | + | $B \ = \ $ { 1.732 3% } |
{Bestimmen Sie die Koeffizienten $D$ und $E$, wobei $D > E$ gelten soll. | {Bestimmen Sie die Koeffizienten $D$ und $E$, wobei $D > E$ gelten soll. | ||
|type="{}"} | |type="{}"} | ||
− | $D \ = $ { 3.464 3% } | + | $D \ = \ $ { 3.464 3% } |
− | $E \ = $ { 1.732 3% } | + | $E \ = \ $ { 1.732 3% } |
{Geben Sie die Maximalwerte für $x$ und $y$ an. | {Geben Sie die Maximalwerte für $x$ und $y$ an. | ||
|type="{}"} | |type="{}"} | ||
− | $x_\text{max}\ = $ { 3.464 3% } | + | $x_\text{max}\ = \ $ { 3.464 3% } |
− | $y_\text{max}\ = $ { 6.196 3% } | + | $y_\text{max}\ = \ $ { 6.196 3% } |
Revision as of 10:21, 17 August 2018
Ausgehend von statistisch unabhängigen Größen $u$ und $v$, die beide zwischen $-1$ und $+1$ gleichverteilt sind und somit jeweils die Varianz $\sigma^2 = 2/3$ besitzen, soll eine 2D-Zufallsgröße $(x, y)$ generiert werden, wobei für die Komponenten gilt:
- $$x = A \cdot u + B \cdot v + C,$$
- $$y= D \cdot u + E \cdot v + F.$$
Die zu erzeugende 2D–Zufallsgröße $(x, y)$ soll die folgenden statistischen Eigenschaften aufweisen:
- Die Varianzen seien $\sigma_x^2 = 4$ und $\sigma_y^2 = 10$.
- Die Zufallsgröße $x$ sei mittelwertfrei $(m_x =0)$.
- Für den Mittelwert von $y$ gelte $m_y = 1$.
- Der Korrelationskoeffizient zwischen $x$ und $y$ betrage $\rho_{xy} = \sqrt{0.9} = 0.949.$
- Die Zufallsgröße $x$ besitze eine dreieckförmige WDF $f_x(x)$ entsprechend der oberen Grafik.
- Die Zufallsgröße $y$ besitze eine trapezförmige WDF $f_y(y)$ entsprechend der unteren Grafik.
Hinweise:
- Die Aufgabe gehört zum Kapitel Linearkombinationen von Zufallsgrößen.
- Insbesondere wird Bezug genommen auf die Seite Erzeugung korrelierter Zufallsgrößen.
- Um Mehrdeutigkeiten zu vermeiden wird festgelegt, dass alle Koeffizienten $A$, ... , $F$ nicht negativ sein sollen.
Fragebogen
Musterlösung
- $$ C = m_x\hspace{0.15cm}\underline{ = 0},$$
- $$ F = m_y\hspace{0.15cm}\underline{ = 1}.$$
(2) Unter Berücksichtigung von $\sigma^2 = 2/3$ gilt:
- $$\sigma_x^2 = \sigma^2 \cdot ( A^2 + B^2)= {2}/{3} \cdot ( A^2 + B^2) .$$
Wegen $\sigma_x^2 = 4$ folgt daraus $A^2 + B^2= 6$. Eine dreieckförmige WDF bedeutet, dass $A = \pm B$ gelten muss. Somit erhält man, da negative Koeffizienten ausgeschlossen wurden:
- $$ A = B = \sqrt{3}\hspace{0.15cm}\underline{ = 1.732}.$$
(3) Mit $ A = B = \sqrt{3}$ entsprechend der letzten Teilaufgabe verbleiben zwei Bestimmungsgleichungen für $D$ und $E$:
- $$\sigma_y^2 = \sigma^2 \cdot ( D^2 + E^2)= 10 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} D^2 + E^2 = \frac {\sigma_y^2}{\sigma^2} = \frac {10}{2/3} \stackrel{!}{=}15,$$
- $$\rho_{xy} = \frac{A \cdot D + B \cdot E}{\sqrt{(A^2 + B^2)(D^2 + E^2)}} = \frac{\sqrt{3} \cdot (D + E)}{\sqrt{6 \cdot (D^2 + E^2)}} \stackrel{!}{=} \sqrt{0.9}.$$
Daraus folgt weiter: $D + E = \sqrt{1.8 \cdot ( D^2 + E^2)} = \sqrt{27} = 3 \cdot \sqrt{3}.$ Die Gleichung führt in Verbindung mit $D^2 + E^2 = 15$ und der oben angegebenen Nebenbedingung$(D>E)$ zum Ergebnis:
- $$ D= 2 \cdot \sqrt{3}\hspace{0.15cm}\underline{ = 3.464}, \hspace{0.5cm}E= \sqrt{3} \hspace{0.15cm}\underline{= 1.732}.$$
(4) Die Zufallsgröße $x$ bzw. $y$ nehmen ihre maximalen Werte an, wenn jeweils $u= 1$ und $v= 1$ gilt:
- $$ x_\text{max}= A+B \hspace{0.15cm}\underline{ = 3.464}, \hspace{0.5cm} x_\text{min} = - A - B= -3.464.$$
- $$ y_\text{max}= D+E+F \hspace{0.15cm}\underline{ = 6.196}, \hspace{0.5cm} y_\text{min} = -D-E+F= -3.464.$$