Difference between revisions of "Aufgaben:Exercise 4.7Z: About the Water Filling Algorithm"
m (Textersetzung - „\*\s*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0\.” ein.“ durch „ “) |
|||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID2903__Inf_T_4_2_S4d.png|right|frame| | + | [[File:P_ID2903__Inf_T_4_2_S4d.png|right|frame|Water–Filling–Prinzip $(K = 4)$]] |
Wir betrachten $K$ parallele Gaußsche Kanäle (AWGN) mit unterschiedlichen Störleistungen $\sigma_k^2$, wobei $1 \le k \le K$ gelten soll. Die Grafik verdeutlicht diese Konstellation am Beispiel $K = 4$. | Wir betrachten $K$ parallele Gaußsche Kanäle (AWGN) mit unterschiedlichen Störleistungen $\sigma_k^2$, wobei $1 \le k \le K$ gelten soll. Die Grafik verdeutlicht diese Konstellation am Beispiel $K = 4$. | ||
− | Die Sendeleistung in den einzelnen Kanälen wird mit $P_k$ bezeichnet, deren Summe den vorgegebenen Wert $P_X$ nicht überschreiten darf: | + | Die Sendeleistung in den einzelnen Kanälen wird mit $P_k$ bezeichnet, deren Summe den vorgegebenen Wert $P_X$ nicht überschreiten darf: |
:$$P_1 +\text{...}\hspace{0.05cm}+ P_K = \hspace{0.1cm} \sum_{k= 1}^K | :$$P_1 +\text{...}\hspace{0.05cm}+ P_K = \hspace{0.1cm} \sum_{k= 1}^K | ||
\hspace{0.1cm}{\rm E} \left [ X_k^2\right ] \le P_{X} \hspace{0.05cm}.$$ | \hspace{0.1cm}{\rm E} \left [ X_k^2\right ] \le P_{X} \hspace{0.05cm}.$$ | ||
− | Sind die Zufallsgrößen $X_1$, | + | Sind die Zufallsgrößen $X_1$, ... , $X_K$ gaußisch, so kann für die (gesamte) Transinformation zwischen dem Eingang $X$ und dem Ausgang $Y$ geschrieben werden: |
:$$I(X_1,\text{...} \hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, \text{...}\hspace{0.05cm}, Y_K) | :$$I(X_1,\text{...} \hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, \text{...}\hspace{0.05cm}, Y_K) | ||
= 1/2 \cdot \sum_{k= 1}^K \hspace{0.1cm} {\rm log}_2 \hspace{0.1cm} ( 1 + \frac{P_k}{\sigma_k^2})\hspace{0.05cm},\hspace{0.5cm} | = 1/2 \cdot \sum_{k= 1}^K \hspace{0.1cm} {\rm log}_2 \hspace{0.1cm} ( 1 + \frac{P_k}{\sigma_k^2})\hspace{0.05cm},\hspace{0.5cm} | ||
Line 15: | Line 15: | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | Das Maximum hierfür ist die Kanalkapazität des Gesamtsystems, wobei sich die Maximierung auf die Aufteilung der Gesamtleistung $P_X$ auf die einzelnen Kanäle bezieht: | + | Das Maximum hierfür ist die Kanalkapazität des Gesamtsystems, wobei sich die Maximierung auf die Aufteilung der Gesamtleistung $P_X$ auf die einzelnen Kanäle bezieht: |
:$$C_K(P_X) = \max_{P_k\hspace{0.05cm},\hspace{0.15cm}{\rm mit} \hspace{0.15cm}P_1 + ... \hspace{0.05cm}+ P_K = P_X} \hspace{-0.5cm} I(X_1, \text{...} \hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, \text{...}\hspace{0.05cm}, Y_K) \hspace{0.05cm}.$$ | :$$C_K(P_X) = \max_{P_k\hspace{0.05cm},\hspace{0.15cm}{\rm mit} \hspace{0.15cm}P_1 + ... \hspace{0.05cm}+ P_K = P_X} \hspace{-0.5cm} I(X_1, \text{...} \hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, \text{...}\hspace{0.05cm}, Y_K) \hspace{0.05cm}.$$ | ||
− | Diese Maximierung kann mit dem Water–Filling–Algorithmus geschehen, der in obiger Grafik für $K = 4$ dargestellt ist. In der vorliegenden Aufgabe soll dieser Algorithmus angewendet werden, wobei von folgenden Voraussetzungen auszugehen ist: | + | Diese Maximierung kann mit dem Water–Filling–Algorithmus geschehen, der in obiger Grafik für $K = 4$ dargestellt ist. |
+ | |||
+ | In der vorliegenden Aufgabe soll dieser Algorithmus angewendet werden, wobei von folgenden Voraussetzungen auszugehen ist: | ||
* Zwei parallele Gaußkanäle ⇒ $K = 2$, | * Zwei parallele Gaußkanäle ⇒ $K = 2$, | ||
− | * Normierte Störleistungen $\sigma_1^2 = 1$ und $\sigma_2^2 = 4$, | + | * Normierte Störleistungen $\sigma_1^2 = 1$ und $\sigma_2^2 = 4$, |
− | *Normierte Sendeleistungen $P_X = 10$ bzw. $P_X = 3$. | + | *Normierte Sendeleistungen $P_X = 10$ bzw. $P_X = 3$. |
+ | |||
+ | |||
+ | |||
''Hinweise:'' | ''Hinweise:'' | ||
− | *Die Aufgabe gehört zum Kapitel [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang|AWGN–Kanalkapazität bei wertkontinuierlichem Eingang]]. | + | *Die Aufgabe gehört zum Kapitel [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang|AWGN–Kanalkapazität bei wertkontinuierlichem Eingang]]. |
− | *Bezug genommen wird insbesondere auf die Seite [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang#Parallele_Gau.C3.9Fsche_Kan.C3.A4le|Parallele Gaußkanäle]]. | + | *Bezug genommen wird insbesondere auf die Seite [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang#Parallele_Gau.C3.9Fsche_Kan.C3.A4le|Parallele Gaußkanäle]]. |
− | *Da die Ergebnisse in „bit” angegeben werden sollen, wird in den Gleichungen | + | *Da die Ergebnisse in „bit” angegeben werden sollen, wird in den Gleichungen der Logarithmus zur Basis $2$ verwendet: $\log_2$. |
Line 36: | Line 41: | ||
{Welche Strategien der Leistungszuteilung sind sinnvoll? | {Welche Strategien der Leistungszuteilung sind sinnvoll? | ||
|type="[]"} | |type="[]"} | ||
− | - Einem stark gestörten Kanal $k$ (mit großer Störleistung $\sigma_k^2$ sollte eine große Nutzleistung $P_k$ zugewiesen werden. | + | - Einem stark gestörten Kanal $k$ (mit großer Störleistung $\sigma_k^2$) sollte eine große Nutzleistung $P_k$ zugewiesen werden. |
− | + Einem stark gestörten Kanal $k$ (mit großer Störleistung $\sigma_k^2$ sollte nur eine kleine Nutzleistung $P_k$ zugewiesen werden. | + | + Einem stark gestörten Kanal $k$ (mit großer Störleistung $\sigma_k^2$) sollte nur eine kleine Nutzleistung $P_k$ zugewiesen werden. |
− | + Bei | + | + Bei gleich guten Kanälen ⇒ $\sigma_1^2 = \text{...} = \sigma_K^2 = \sigma_N^2$ sollte die Leistung gleichmäßig verteilt werden. |
− | {Welche Transinformation | + | {Welche Transinformation ergibt sich, wenn man die Sendeleistung $P_X = 10$ gleichmäßig auf beide Kanäle verteilt $(P_1= P_2 = 5)$? |
|type="{}"} | |type="{}"} | ||
$I(X_1, X_2; Y_1, Y_2) \ = \ $ { 1.877 3% } $\ \rm bit$ | $I(X_1, X_2; Y_1, Y_2) \ = \ $ { 1.877 3% } $\ \rm bit$ | ||
Line 53: | Line 58: | ||
− | {Wie groß ist die Kanalkapazität für $K = 2$ und $P_X = 10$? | + | {Wie groß ist die Kanalkapazität für $\underline{K = 2}$ und $\underline{P_X = 10}$? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $C \ = \ $ { 1.907 3% } $\ \rm bit$ |
− | {Welche Transinformation | + | {Welche Transinformation ergibt sich, wenn man die Sendeleistung $P_X = 3$ gleichmäßig auf beide Kanäle verteilt $(P_1= P_2 = 1.5)$? |
|type="{}"} | |type="{}"} | ||
$I(X_1, X_2; Y_1, Y_2) \ = \ $ { 0.891 3% }$\ \rm bit$ | $I(X_1, X_2; Y_1, Y_2) \ = \ $ { 0.891 3% }$\ \rm bit$ | ||
− | {Wie groß ist die Kanalkapazität für $K = 2$ und $P_X = 3$? | + | {Wie groß ist die Kanalkapazität für $\underline{K = 2}$ und $\underline{P_X = 3}$? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $C \ = \ $ { 1 3% } $\ \rm bit$ |
Revision as of 13:45, 18 October 2018
Wir betrachten $K$ parallele Gaußsche Kanäle (AWGN) mit unterschiedlichen Störleistungen $\sigma_k^2$, wobei $1 \le k \le K$ gelten soll. Die Grafik verdeutlicht diese Konstellation am Beispiel $K = 4$.
Die Sendeleistung in den einzelnen Kanälen wird mit $P_k$ bezeichnet, deren Summe den vorgegebenen Wert $P_X$ nicht überschreiten darf:
- $$P_1 +\text{...}\hspace{0.05cm}+ P_K = \hspace{0.1cm} \sum_{k= 1}^K \hspace{0.1cm}{\rm E} \left [ X_k^2\right ] \le P_{X} \hspace{0.05cm}.$$
Sind die Zufallsgrößen $X_1$, ... , $X_K$ gaußisch, so kann für die (gesamte) Transinformation zwischen dem Eingang $X$ und dem Ausgang $Y$ geschrieben werden:
- $$I(X_1,\text{...} \hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, \text{...}\hspace{0.05cm}, Y_K) = 1/2 \cdot \sum_{k= 1}^K \hspace{0.1cm} {\rm log}_2 \hspace{0.1cm} ( 1 + \frac{P_k}{\sigma_k^2})\hspace{0.05cm},\hspace{0.5cm} {\rm Ergebnis\hspace{0.15cm} in \hspace{0.15cm} bit} \hspace{0.05cm}.$$
Das Maximum hierfür ist die Kanalkapazität des Gesamtsystems, wobei sich die Maximierung auf die Aufteilung der Gesamtleistung $P_X$ auf die einzelnen Kanäle bezieht:
- $$C_K(P_X) = \max_{P_k\hspace{0.05cm},\hspace{0.15cm}{\rm mit} \hspace{0.15cm}P_1 + ... \hspace{0.05cm}+ P_K = P_X} \hspace{-0.5cm} I(X_1, \text{...} \hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, \text{...}\hspace{0.05cm}, Y_K) \hspace{0.05cm}.$$
Diese Maximierung kann mit dem Water–Filling–Algorithmus geschehen, der in obiger Grafik für $K = 4$ dargestellt ist.
In der vorliegenden Aufgabe soll dieser Algorithmus angewendet werden, wobei von folgenden Voraussetzungen auszugehen ist:
- Zwei parallele Gaußkanäle ⇒ $K = 2$,
- Normierte Störleistungen $\sigma_1^2 = 1$ und $\sigma_2^2 = 4$,
- Normierte Sendeleistungen $P_X = 10$ bzw. $P_X = 3$.
Hinweise:
- Die Aufgabe gehört zum Kapitel AWGN–Kanalkapazität bei wertkontinuierlichem Eingang.
- Bezug genommen wird insbesondere auf die Seite Parallele Gaußkanäle.
- Da die Ergebnisse in „bit” angegeben werden sollen, wird in den Gleichungen der Logarithmus zur Basis $2$ verwendet: $\log_2$.
Fragebogen
Musterlösung
- Nach den Ausführungen im Theorieteil ist die Strategie „Water–Filling” ⇒ Vorschlag 2 anzuwenden, wenn ungleiche Bedingungen vorliegen.
- Der Lösungsvorschlag 3 ist aber ebenfalls richtig: Bei gleich guten Kanälen spricht nichts dagegen, alle K Kanäle mit der gleichen Leistung ⇒ P1 = P2 = ... = PK = PX/K zu versorgen.
(2) Für die Transinformation gilt bei gleicher Leistungsaufteilung:
- $$I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1, Y_2) \ = \ {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{5}{1} \right ) +{1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{5}{4} \right )=1.292\,{\rm bit}+ 0.585\,{\rm bit} \hspace{0.15cm}\underline{= 1.877\,{\rm bit}} \hspace{0.05cm}.$$
(3) Entsprechend nebenstehender Skizze muss gelten:
- $$P_2 = P_1 - (\sigma_2^2 - \sigma_1^2) = P_1 -3\hspace{0.3cm}\text{wobei }\hspace{0.3cm}P_1 + P_2 = P_X = 10$$
- $$\Rightarrow \hspace{0.3cm} P_1 + (P_1 -3) = 10\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 2 \cdot P_1 = 13 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{P_1 = 6.5}\hspace{0.05cm}, \hspace{0.3cm}\underline{P_2 = 3.5}\hspace{0.05cm}.$$
(4) Die Kanalkapazität gibt die maximale Transinformation an. Das Maximum liegt durch die bestmögliche Leistungsaufteilung gemäß der Teilaufgabe (c) bereits fest. Mit PX = 10 gilt:
- $$C_2={1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{6.5}{1} \right ) +{1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{3.5}{4} \right )=1.453\,{\rm bit}+ 0.453\,{\rm bit} \hspace{0.15cm}\underline{= 1.906\,{\rm bit}} \hspace{0.05cm}.$$
(5) Für PX = 3 erhält man bei gleicher Leistungsaufteilung (P1 = P2 = 1.5):
- $$I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1, Y_2) ={1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{1.5}{1} \right ) +{1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{1.5}{4} \right )= \text{...} \hspace{0.15cm}\underline{= 0.891\,{\rm bit}} \hspace{0.05cm}.$$
(6) Entsprechend dem Water–Filling–Algorithmus wird die gesamte zur Verfügung stehende Sendeleistung PX = 3 nun vollständig dem ersten Kanal zugewiesen:
- $${P_1 = 3}\hspace{0.05cm}, \hspace{0.3cm}{P_2 = 0}\hspace{0.05cm}.$$
Damit erhält man für die Kanalkapazität:
- $$C_2 ={1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{3}{1} \right ) +{1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{0}{4} \right )=1\,{\rm bit}+ 0\,{\rm bit} \hspace{0.15cm}\underline{= 1\,{\rm bit}} \hspace{0.05cm}.$$
Weitere Anmerkungen:
- Während für PX = 10 die Differenz zwischen gleichmäßiger und bester Leistungsaufteilung nur 0.03 bit betragen hat, ist bei PX = 3 die Differenz größer, nämlich 0.109 bit.
- Bei noch größerem PX > 10 wird der Abstand zwischen gleichmäßiger und bestmöglicher Leistungsaufteilung noch geringer.
Zum Beispiel beträgt die Differenz für PX = 100 nur noch 0.001 bit, wie die folgende Rechnung zeigt:
- Für P1 = P2 = 50 erhält man:
- $$I = I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1, Y_2) = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{50}{1} \right ) +{1}/{2}\cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{50}{4} \right )= 2.836\,{\rm bit}+ 1.877\,{\rm bit} \hspace{0.15cm}\underline{= 4.713\,{\rm bit}} \hspace{0.05cm}.$$
- Dagegen erhält man bei bestmöglicher Aufteilung ⇒ P1 = 51.5, P2 = 48.5:
- $$C_2 = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{51.5}{1} \right ) +{1}/{2}\cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{48.5}{4} \right )= 2.857\,{\rm bit}+ 1.857\,{\rm bit} \hspace{0.15cm}\underline{= 4.714\,{\rm bit}} \hspace{0.05cm}.$$