Difference between revisions of "Aufgaben:Exercise 4.17Z: Rayleigh and Rice Distribution"

From LNTwww
m (Textersetzung - „* Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Line 2: Line 2:
 
{{quiz-Header|Buchseite=Digitalsignalübertragung/Trägerfrequenzsysteme mit nichtkohärenter Demodulation}}  
 
{{quiz-Header|Buchseite=Digitalsignalübertragung/Trägerfrequenzsysteme mit nichtkohärenter Demodulation}}  
  
[[File:P_ID2079__Dig_Z_4_17.png|right|frame|Rice- (oben) und Rayleighverteilung (unten)]]
+
[[File:P_ID2079__Dig_Z_4_17.png|right|frame|Rice- (oben) und Rayleigh (unten)]]
Für die Untersuchung von Nachrichtensystemen haben die Rayleigh– und die Rice–Verteilung eine große Bedeutung. Im Folgenden sei $y$ eine rayleigh– oder eine riceverteilte Zufallsgröße und $\eta$ jeweils eine Realisierung hiervon.
+
Für die Untersuchung von Nachrichtensystemen haben die Rayleigh– und die Rice–Verteilung eine große Bedeutung. Im Folgenden sei  $y$  eine rayleigh– oder eine riceverteilte Zufallsgröße und  $\eta$  jeweils eine Realisierung hiervon.
* Die <i>Rayleighverteilung</i> ergibt sich dabei für die Wahrscheinlichkeitsdichtefunktion (kurz: WDF) einer Zufallsgröße $y$, die sich aus den beiden gaußverteilten und statistisch unabhängigen Komponenten $u$ und $\upsilon$ (beide mit der Streuung $\sigma_n$) wie folgt ergibt:
+
* Die <i>Rayleighverteilung</i>&nbsp; ergibt sich dabei für die Wahrscheinlichkeitsdichtefunktion (kurz: WDF) einer Zufallsgröße&nbsp; $y$, die sich aus den beiden gaußverteilten und statistisch unabhängigen Komponenten&nbsp; $u$&nbsp; und&nbsp; $v$&nbsp; $($beide mit der Streuung&nbsp; $\sigma_n)$&nbsp; wie folgt ergibt:
 
:$$y = \sqrt{u^2 + v^2} \hspace{0.1cm} \Rightarrow \hspace{0.1cm} p_y (\eta) = \frac{\eta}{\sigma_n^2}
 
:$$y = \sqrt{u^2 + v^2} \hspace{0.1cm} \Rightarrow \hspace{0.1cm} p_y (\eta) = \frac{\eta}{\sigma_n^2}
 
  \cdot {\rm exp } \left [ - \frac{\eta^2}{2 \sigma_n^2}\right ]
 
  \cdot {\rm exp } \left [ - \frac{\eta^2}{2 \sigma_n^2}\right ]
 
  \hspace{0.01cm}.$$
 
  \hspace{0.01cm}.$$
  
* Die <i>Riceverteilung</i> erhält man unter sonst gleichen Randbedingungen für den Anwendungsfall, dass bei einer der beiden Komponenten noch eine Konstante $C$ addiert wird, zum Beispiel:
+
* Die <i>Riceverteilung</i>&nbsp; erhält man unter sonst gleichen Randbedingungen für den Anwendungsfall, dass bei einer der beiden Komponenten noch eine Konstante&nbsp; $C$&nbsp; addiert wird, zum Beispiel:
 
:$$y = \sqrt{(u+C)^2 + v^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_y (\eta) = \frac{\eta}{\sigma_n^2}
 
:$$y = \sqrt{(u+C)^2 + v^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_y (\eta) = \frac{\eta}{\sigma_n^2}
 
  \cdot {\rm exp } \left [ - \frac{\eta^2 + C^2}{2 \sigma_n^2}\right ] \cdot {\rm I }_0 \left [ \frac{\eta \cdot  C}{ \sigma_n^2}\right ]
 
  \cdot {\rm exp } \left [ - \frac{\eta^2 + C^2}{2 \sigma_n^2}\right ] \cdot {\rm I }_0 \left [ \frac{\eta \cdot  C}{ \sigma_n^2}\right ]
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
In dieser Gleichung bezeichnet ${\rm I}_0(x)$ die [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_nichtkoh%C3%A4renter_Demodulation#Rayleigh.E2.80.93_und_Riceverteilung| modifizierte Besselfunktion nullter Ordnung]].
+
In dieser Gleichung bezeichnet&nbsp; ${\rm I}_0(x)$&nbsp; die&nbsp; [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_nichtkoh%C3%A4renter_Demodulation#Rayleigh.E2.80.93_und_Riceverteilung| modifizierte Besselfunktion nullter Ordnung]].
  
In der Grafik sind die beiden Dichtefunktionen dargestellt, wobei allerdings nicht angegeben wird, ob $p_{\hspace{0.03cm}\rm I}(\eta)$ bzw. $p_{\hspace{0.03cm}\rm II}(\eta)$ zu einer Rayleigh&ndash; oder zu einer Riceverteilung gehören. Bekannt ist nur, dass je eine Rayleigh&ndash; und eine Riceverteilung dargestellt ist. Der Parameter $\sigma_n$ ist bei beiden gleich.
+
In der Grafik sind die beiden Dichtefunktionen dargestellt, wobei allerdings nicht angegeben wird, ob&nbsp; $p_{\hspace{0.03cm}\rm I}(\eta)$&nbsp; bzw.&nbsp; $p_{\hspace{0.03cm}\rm II}(\eta)$&nbsp; zu einer Rayleigh&ndash; oder zu einer Riceverteilung gehören.
 +
* Bekannt ist nur, dass je eine Rayleigh&ndash; und eine Riceverteilung dargestellt ist.  
 +
*Der Parameter&nbsp; $\sigma_n$&nbsp; ist bei beiden Verteilungen gleich.
  
Für Ihre Entscheidung, ob Sie $p_{\hspace{0.03cm}\rm I}(\eta)$ oder $p_{\rm II}(\hspace{0.03cm}\eta)$ der Riceverteilung zuordnen, und für die Ermittlung der WDF&ndash;Parameter können Sie folgende Aussagen berücksichtigen:
+
 
* Für große Werte des Quotienten $C/\sigma_n$ lässt sich die Riceverteilung durch eine Gaußverteilung mit Mittelwert $C$ und Streuung $\sigma_n$ annähern.
+
Für Ihre Entscheidung, ob Sie&nbsp; $p_{\hspace{0.03cm}\rm I}(\eta)$&nbsp; oder&nbsp; $p_{\rm II}(\hspace{0.03cm}\eta)$&nbsp; der Riceverteilung zuordnen, und für die Ermittlung der WDF&ndash;Parameter können Sie folgende Aussagen berücksichtigen:
* Die der Grafik zugrunde liegenden Werte von $C$ und $\sigma_n$ sind ganzzahlig.
+
* Für große Werte des Quotienten&nbsp; $C/\sigma_n$&nbsp; lässt sich die Riceverteilung durch eine Gaußverteilung mit Mittelwert&nbsp; $C$&nbsp; und Streuung&nbsp; $\sigma_n$&nbsp; annähern.
 +
* Die der Grafik zugrunde liegenden Werte von&nbsp; $C$&nbsp; und&nbsp; $\sigma_n$&nbsp; sind ganzzahlig.
  
  
 
Hinsichtlich der Rayleighverteilung ist zu beachten:
 
Hinsichtlich der Rayleighverteilung ist zu beachten:
* Für beide Verteilungen ist das gleiche $\sigma_n$ zugrunde gelegt.
+
* Für beide Verteilungen ist das gleiche&nbsp; $\sigma_n$&nbsp; zugrunde gelegt.
 
* Für die Streuung (Wurzel aus der Varianz) der Rayleighverteilung gilt:
 
* Für die Streuung (Wurzel aus der Varianz) der Rayleighverteilung gilt:
 
:$$\sigma_y = \sigma_n  \cdot  \sqrt{2 - {\pi}/{2 }} \hspace{0.2cm} \approx \hspace{0.2cm} 0.655 \cdot \sigma_n   
 
:$$\sigma_y = \sigma_n  \cdot  \sqrt{2 - {\pi}/{2 }} \hspace{0.2cm} \approx \hspace{0.2cm} 0.655 \cdot \sigma_n   
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
* Für die Streuung bzw. für die Varianz der Riceverteilung kann allgemein nur ein komplizierter Ausdruck mit hypergeometrischen Funktionen angegeben werden, ansonsten nur eine Näherung für $C \gg \sigma_n$ entsprechend der Gaußverteilung.
+
* Für die Streuung bzw. für die Varianz der Riceverteilung kann allgemein nur ein komplizierter Ausdruck mit hypergeometrischen Funktionen angegeben werden, ansonsten nur eine Näherung für&nbsp; $C \gg \sigma_n$&nbsp; entsprechend der Gaußverteilung.
 +
 
 +
 
 +
 
  
  
  
 
''Hinweise:''
 
''Hinweise:''
* Diese Aufgabe gehört zum Kapitel [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_nichtkoh%C3%A4renter_Demodulation| Trägerfrequenzsysteme mit nichtkohärenter Demodulation]].
+
* Diese Aufgabe gehört zum Kapitel&nbsp; [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_nichtkoh%C3%A4renter_Demodulation| Trägerfrequenzsysteme mit nichtkohärenter Demodulation]].
 
   
 
   
 
* Gegeben ist zudem das folgende unbestimmteIntegral:
 
* Gegeben ist zudem das folgende unbestimmteIntegral:
Line 46: Line 52:
 
{Ordnen Sie die Grafiken der Rayleigh&ndash; bzw. Riceverteilung zu.
 
{Ordnen Sie die Grafiken der Rayleigh&ndash; bzw. Riceverteilung zu.
 
|type="()"}
 
|type="()"}
- $p_{\hspace{0.03cm}\rm I}(\eta)$ entspricht der Rayleighverteilung, $p_{\hspace{0.03cm}\rm II}(\eta)$ der Riceverteilung.
+
- $p_{\hspace{0.03cm}\rm I}(\eta)$&nbsp; entspricht der Rayleighverteilung, &nbsp;$p_{\hspace{0.03cm}\rm II}(\eta)$&nbsp; der Riceverteilung.
+ $p_{\hspace{0.03cm}\rm I}(\eta)$ entspricht der Riceverteilung, $p_{\hspace{0.03cm}\rm II}(\eta)$ der Rayleighverteilung.
+
+ $p_{\hspace{0.03cm}\rm I}(\eta)$&nbsp; entspricht der Riceverteilung, &nbsp;$p_{\hspace{0.03cm}\rm II}(\eta)$&nbsp; der Rayleighverteilung.
  
 
{Geben Sie die Parameter der hier dargestellten Riceverteilung an.
 
{Geben Sie die Parameter der hier dargestellten Riceverteilung an.
Line 59: Line 65:
 
+ die Riceverteilung?.
 
+ die Riceverteilung?.
  
{Berechnen Sie die Überschreitungswahrscheinlichkeiten der Rayleighverteilung
+
{Berechnen Sie die Überschreitungswahrscheinlichkeiten der Rayleighverteilung.
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(y > \sigma_n) \hspace{0.33cm} = \ $ { 60.7 3% } $ \ \%$
 
${\rm Pr}(y > \sigma_n) \hspace{0.33cm} = \ $ { 60.7 3% } $ \ \%$

Revision as of 14:45, 19 March 2019

Rice- (oben) und Rayleigh (unten)

Für die Untersuchung von Nachrichtensystemen haben die Rayleigh– und die Rice–Verteilung eine große Bedeutung. Im Folgenden sei  $y$  eine rayleigh– oder eine riceverteilte Zufallsgröße und  $\eta$  jeweils eine Realisierung hiervon.

  • Die Rayleighverteilung  ergibt sich dabei für die Wahrscheinlichkeitsdichtefunktion (kurz: WDF) einer Zufallsgröße  $y$, die sich aus den beiden gaußverteilten und statistisch unabhängigen Komponenten  $u$  und  $v$  $($beide mit der Streuung  $\sigma_n)$  wie folgt ergibt:
$$y = \sqrt{u^2 + v^2} \hspace{0.1cm} \Rightarrow \hspace{0.1cm} p_y (\eta) = \frac{\eta}{\sigma_n^2} \cdot {\rm exp } \left [ - \frac{\eta^2}{2 \sigma_n^2}\right ] \hspace{0.01cm}.$$
  • Die Riceverteilung  erhält man unter sonst gleichen Randbedingungen für den Anwendungsfall, dass bei einer der beiden Komponenten noch eine Konstante  $C$  addiert wird, zum Beispiel:
$$y = \sqrt{(u+C)^2 + v^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_y (\eta) = \frac{\eta}{\sigma_n^2} \cdot {\rm exp } \left [ - \frac{\eta^2 + C^2}{2 \sigma_n^2}\right ] \cdot {\rm I }_0 \left [ \frac{\eta \cdot C}{ \sigma_n^2}\right ] \hspace{0.05cm}.$$

In dieser Gleichung bezeichnet  ${\rm I}_0(x)$  die  modifizierte Besselfunktion nullter Ordnung.

In der Grafik sind die beiden Dichtefunktionen dargestellt, wobei allerdings nicht angegeben wird, ob  $p_{\hspace{0.03cm}\rm I}(\eta)$  bzw.  $p_{\hspace{0.03cm}\rm II}(\eta)$  zu einer Rayleigh– oder zu einer Riceverteilung gehören.

  • Bekannt ist nur, dass je eine Rayleigh– und eine Riceverteilung dargestellt ist.
  • Der Parameter  $\sigma_n$  ist bei beiden Verteilungen gleich.


Für Ihre Entscheidung, ob Sie  $p_{\hspace{0.03cm}\rm I}(\eta)$  oder  $p_{\rm II}(\hspace{0.03cm}\eta)$  der Riceverteilung zuordnen, und für die Ermittlung der WDF–Parameter können Sie folgende Aussagen berücksichtigen:

  • Für große Werte des Quotienten  $C/\sigma_n$  lässt sich die Riceverteilung durch eine Gaußverteilung mit Mittelwert  $C$  und Streuung  $\sigma_n$  annähern.
  • Die der Grafik zugrunde liegenden Werte von  $C$  und  $\sigma_n$  sind ganzzahlig.


Hinsichtlich der Rayleighverteilung ist zu beachten:

  • Für beide Verteilungen ist das gleiche  $\sigma_n$  zugrunde gelegt.
  • Für die Streuung (Wurzel aus der Varianz) der Rayleighverteilung gilt:
$$\sigma_y = \sigma_n \cdot \sqrt{2 - {\pi}/{2 }} \hspace{0.2cm} \approx \hspace{0.2cm} 0.655 \cdot \sigma_n \hspace{0.05cm}.$$
  • Für die Streuung bzw. für die Varianz der Riceverteilung kann allgemein nur ein komplizierter Ausdruck mit hypergeometrischen Funktionen angegeben werden, ansonsten nur eine Näherung für  $C \gg \sigma_n$  entsprechend der Gaußverteilung.




Hinweise:

  • Gegeben ist zudem das folgende unbestimmteIntegral:
$$\int x \cdot {\rm e }^{-x^2} \,{\rm d} x = -{1}/{2} \cdot {\rm e }^{-x^2} + {\rm const. } $$



Fragebogen

1

Ordnen Sie die Grafiken der Rayleigh– bzw. Riceverteilung zu.

$p_{\hspace{0.03cm}\rm I}(\eta)$  entspricht der Rayleighverteilung,  $p_{\hspace{0.03cm}\rm II}(\eta)$  der Riceverteilung.
$p_{\hspace{0.03cm}\rm I}(\eta)$  entspricht der Riceverteilung,  $p_{\hspace{0.03cm}\rm II}(\eta)$  der Rayleighverteilung.

2

Geben Sie die Parameter der hier dargestellten Riceverteilung an.

$C \hspace{0.25cm} = \ $

$\sigma_n \ = \ $

3

Welche Verteilung besitzt eine größere Varianz?

Die Rayleighverteilung,
die Riceverteilung?.

4

Berechnen Sie die Überschreitungswahrscheinlichkeiten der Rayleighverteilung.

${\rm Pr}(y > \sigma_n) \hspace{0.33cm} = \ $

$ \ \%$
${\rm Pr}(y > 2\sigma_n) \ = \ $

$ \ \%$
${\rm Pr}(y > 3\sigma_n) \ = \ $

$ \ \%$


Musterlösung

(1)  Richtig ist der zweite Lösungsvorschlag..:

  • Die obere Grafik zeigt näherungsweise eine Gaußverteilung und gehört dementsprechend zur Riceverteilung.


(2)  Man erkennt aus der Grafik: Der Mittelwert der Gaußverteilung ist $\underline {C = 4}$ und die Streuung ist $\underline {\sigma_n = 1}$.
Vorgegeben war ja, dass $C$ und $\sigma_n$ ganzzahlig seien. Damit lauten die beiden Dichtefunktionen:

$$p_{\rm I} (\eta) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\eta} \cdot {\rm exp } \left [ - \frac{\eta^2 + 16}{2 }\right ] \cdot {\rm I }_0 (4\eta ) \approx \frac{1}{\sqrt{2\pi }}\cdot {\rm exp } \left [ - \frac{(\eta-4)^2 }{2 }\right ]\hspace{0.05cm},$$
$$ p_{\rm II} (\eta) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\eta} \cdot {\rm exp } \left [ - \frac{\eta^2 }{2 }\right ] \hspace{0.05cm}.$$

(3)  Richtig ist der Lösungsvorschlag 2, wie bereits aus der Grafik ersichtlich ist. Eine Rechnung bestätigt dieses Ergebnis:

$$\sigma_{\rm Rice}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sigma_n^2 = 1\hspace{0.05cm},$$
$$ \sigma_{\rm Rayl}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sigma_n^2 \cdot ({2 - {\pi}/{2 }}) \approx 0.429 \hspace{0.05cm}.$$


(4)  Allgemein ist die Wahrscheinlichkeit, dass $y$ größer ist als ein Wert $y_0$, gleich

$${\rm Pr}(y > y_0) = \int_{y_0}^{\infty} \frac{\eta}{\sigma_n^2} \cdot {\rm exp } \left [ - \frac{\eta^2 }{2 \sigma_n^2}\right ] \,{\rm d} \eta \hspace{0.05cm}.$$

Mit der Substitution $x^2 = \eta^2/(2\sigma_n^2)$ kann hierfür geschrieben werden:

$${\rm Pr}(y > y_0) = 2 \cdot \hspace{-0.05cm}\int_{y_0/(\sqrt{2}\hspace{0.03cm} \cdot \hspace{0.03cm} \sigma_n)}^{\infty} \hspace{-0.5cm}x \cdot {\rm e }^{ - x^2} \,{\rm d} x = \left [{\rm e }^{ - x^2} \right ]_{\sqrt{2}\hspace{0.03cm} \cdot \hspace{0.03cm} \sigma_n}^{\infty} = {\rm exp } \left [ -\frac{ y_0^2 }{2 \sigma_n^2 }\right ]\hspace{0.05cm}.$$

Hierbei wurde das vorne angegebene unbestimmte Integral benutzt. Insbesondere gilt:

$${\rm Pr}(y > \sigma_n) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{ - 0.5} \hspace{0.15cm} \underline{\approx 60.7 \%} \hspace{0.05cm},$$
$$ {\rm Pr}(y > 2\sigma_n) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{ - 2.0} \hspace{0.15cm} \underline{\approx 13.5 \%} \hspace{0.05cm},$$
$$ {\rm Pr}(y > 3\sigma_n) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{ - 4.5} \hspace{0.15cm} \underline{\approx 1.1 \%} \hspace{0.05cm}.$$