Difference between revisions of "Aufgaben:Exercise 2.12: Non-coherent Demodulation"
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “) |
|||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID1088__Mod_A_2_12.png|right|frame|Nichtkohärente ASK–Demodulation]] | + | [[File:P_ID1088__Mod_A_2_12.png|right|frame|Nichtkohärente <br>ASK–Demodulation]] |
Wir betrachten ein AM–moduliertes Signal: | Wir betrachten ein AM–moduliertes Signal: | ||
:$$ s(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$ | :$$ s(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$ | ||
Den Empfänger erreicht aufgrund der Kanallaufzeit das Signal | Den Empfänger erreicht aufgrund der Kanallaufzeit das Signal | ||
:$$ r(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \hspace{0.05cm}.$$ | :$$ r(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \hspace{0.05cm}.$$ | ||
− | Die nebenstehende Anordnung erlaubt eine perfekte Demodulation – das heißt $v(t) = q(t)$ – ohne Kenntnis der Phase $Δϕ_T$, allerdings nur dann, wenn das Quellensignal $q(t)$ gewisse Voraussetzungen erfüllt. | + | Die nebenstehende Anordnung erlaubt eine perfekte Demodulation – das heißt $v(t) = q(t)$ – ohne Kenntnis der Phase $Δϕ_T$, allerdings nur dann, wenn das Quellensignal $q(t)$ gewisse Voraussetzungen erfüllt. |
Die beiden empfängerseitigen Trägersignale lauten: | Die beiden empfängerseitigen Trägersignale lauten: | ||
Line 14: | Line 14: | ||
:$$ z_{\rm 2, \hspace{0.08cm}E}(t) = -2 \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$ | :$$ z_{\rm 2, \hspace{0.08cm}E}(t) = -2 \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$ | ||
− | $\rm TP_1$ und $\rm TP_2$ bezeichnen zwei ideale Tiefpässe, deren Grenzfrequenz jeweils gleich der Trägerfrequenz $f_{\rm T}$ ist. Die nichtlineare Funktion $v = g(b)$ soll im Rahmen dieser Aufgabe ermittelt werden. | + | $\rm TP_1$ und $\rm TP_2$ bezeichnen zwei ideale Tiefpässe, deren Grenzfrequenz jeweils gleich der Trägerfrequenz $f_{\rm T}$ ist. Die nichtlineare Funktion $v = g(b)$ soll im Rahmen dieser Aufgabe ermittelt werden. |
Als (digitale) Quellensignale werden betrachtet: | Als (digitale) Quellensignale werden betrachtet: | ||
− | * das unipolare Rechtecksgnal $q_1(t)$ mit den dimensionslosen Amplitudenwerten $0$ und $3$, | + | * das unipolare Rechtecksgnal $q_1(t)$ mit den dimensionslosen Amplitudenwerten $0$ und $3$, |
− | * das bipolare Rechtecksignal $q_2(t)$ mit den dimensionslosen Amplitudenwerten $±3$. | + | * das bipolare Rechtecksignal $q_2(t)$ mit den dimensionslosen Amplitudenwerten $±3$. |
+ | |||
+ | |||
+ | Diese beiden Signale ergeben hinsichtlich $s(t)$ ein [[Modulationsverfahren/Lineare_digitale_Modulationsverfahren#ASK_.E2.80.93_Amplitude_Shift_Keying|ASK–Signal]] bzw. ein [[Modulationsverfahren/Lineare_digitale_Modulationsverfahren#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|BPSK–Signal]]. | ||
+ | |||
− | |||
''Hinweise:'' | ''Hinweise:'' | ||
− | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Weitere_AM–Varianten|WeitereAM–Variantenn]]. | + | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Weitere_AM–Varianten|WeitereAM–Variantenn]]. |
− | *Bezug genommen wird insbesondere auf die Seite [[Modulationsverfahren/Weitere_AM–Varianten#Inkoh.C3.A4rente_.28nichtkoh.C3.A4rente.29_Demodulation|Inkohärente (nichtkohärente) Demodulation]]. | + | *Bezug genommen wird insbesondere auf die Seite [[Modulationsverfahren/Weitere_AM–Varianten#Inkoh.C3.A4rente_.28nichtkoh.C3.A4rente.29_Demodulation|Inkohärente (nichtkohärente) Demodulation]]. |
*Gegeben sind folgende trigonometrischen Umformungen: | *Gegeben sind folgende trigonometrischen Umformungen: | ||
− | :$$ \cos(\alpha) \cdot \cos(\beta) = 1/2 \cdot \ | + | :$$ \cos(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],$$ |
− | :$$ \sin(\alpha) \cdot \sin(\beta) = 1/2 \cdot \ | + | :$$ \sin(\alpha) \cdot \sin(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)- \cos(\alpha + \beta) \big],$$ |
− | :$$ \sin(\alpha) \cdot \cos(\beta) = 1/2 \cdot \ | + | :$$ \sin(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \big] \hspace{0.05cm}.$$ |
Revision as of 17:00, 17 December 2018
Wir betrachten ein AM–moduliertes Signal:
- $$ s(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$
Den Empfänger erreicht aufgrund der Kanallaufzeit das Signal
- $$ r(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \hspace{0.05cm}.$$
Die nebenstehende Anordnung erlaubt eine perfekte Demodulation – das heißt $v(t) = q(t)$ – ohne Kenntnis der Phase $Δϕ_T$, allerdings nur dann, wenn das Quellensignal $q(t)$ gewisse Voraussetzungen erfüllt.
Die beiden empfängerseitigen Trägersignale lauten:
- $$ z_{\rm 1, \hspace{0.08cm}E}(t) = 2 \cdot \cos(\omega_{\rm T} \cdot t) \hspace{0.05cm},$$
- $$ z_{\rm 2, \hspace{0.08cm}E}(t) = -2 \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$
$\rm TP_1$ und $\rm TP_2$ bezeichnen zwei ideale Tiefpässe, deren Grenzfrequenz jeweils gleich der Trägerfrequenz $f_{\rm T}$ ist. Die nichtlineare Funktion $v = g(b)$ soll im Rahmen dieser Aufgabe ermittelt werden.
Als (digitale) Quellensignale werden betrachtet:
- das unipolare Rechtecksgnal $q_1(t)$ mit den dimensionslosen Amplitudenwerten $0$ und $3$,
- das bipolare Rechtecksignal $q_2(t)$ mit den dimensionslosen Amplitudenwerten $±3$.
Diese beiden Signale ergeben hinsichtlich $s(t)$ ein ASK–Signal bzw. ein BPSK–Signal.
Hinweise:
- Die Aufgabe gehört zum Kapitel WeitereAM–Variantenn.
- Bezug genommen wird insbesondere auf die Seite Inkohärente (nichtkohärente) Demodulation.
- Gegeben sind folgende trigonometrischen Umformungen:
- $$ \cos(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],$$
- $$ \sin(\alpha) \cdot \sin(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)- \cos(\alpha + \beta) \big],$$
- $$ \sin(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \big] \hspace{0.05cm}.$$
Fragebogen
Musterlösung
- $$b_1(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot 2 \cdot \cos(\omega_{\rm T} \cdot t) = q(t) \cdot \cos(\Delta \phi_{\rm T})\hspace{0.05cm},$$
- $$ b_2(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot (-2) \cdot \sin(\omega_{\rm T} \cdot t) = q(t) \cdot \sin(\Delta \phi_{\rm T})\hspace{0.05cm}.$$
Richtig sind somit die erste und die vierte Antwort.
(2) Die Summe der Quadrate der beiden Teilsignale ergibt:
- $$ b(t) = b_1^2(t) + b_2^2(t)= q^2(t) \cdot \left( \cos^2(\Delta \phi_{\rm T})+ \sin^2(\Delta \phi_{\rm T})\right) = q^2(t)\hspace{0.05cm}.$$
Die möglichen Amplitudenwerte sind somit: $b_{\rm min}\hspace{0.15cm}\underline{ = 0},\hspace{0.3cm} b_{\rm max}\hspace{0.15cm}\underline{ =9}.$
(3) Richtig ist der zweite Lösungsvorschlag:
- $$v=g(b) = \sqrt{b} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} v(t) = \sqrt{ q^2(t) } = q(t)\hspace{0.05cm}.$$
(4) Das Ergebnis $b(t) = q^2(t)$ – siehe Teilaufgabe (2) – führt hier zum Ergebnis: $b_{\rm min}\hspace{0.15cm}\underline{ = 9},\hspace{0.3cm} b_{\rm max}\hspace{0.15cm}\underline{ =9}.$
Dies zeigt, dass der hier betrachtete Demodulator nur dann funktioniert, wenn für alle Zeiten $q(t) ≥ 0$ oder $q(t) ≤ 0$ gilt und dies dem Empfänger auch bekannt ist.