Difference between revisions of "Aufgaben:Exercise 4.4: About the Quantization Noise"
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “) |
|||
Line 4: | Line 4: | ||
[[File:P_ID1616__Mod_A_4_4.png|right|frame|Quantisierungsfehler bei sägezahnförmigem Eingang]] | [[File:P_ID1616__Mod_A_4_4.png|right|frame|Quantisierungsfehler bei sägezahnförmigem Eingang]] | ||
− | Zur Berechnung der Quantisierungsrauschleistung $P_{\rm Q}$ gehen wir von einem periodischen sägezahnförmigen Quellensignal $q(t)$ mit dem Wertebereich $±q_{\rm max}$ und der Periodendauer $T_0$ aus. | + | Zur Berechnung der Quantisierungsrauschleistung $P_{\rm Q}$ gehen wir von einem periodischen sägezahnförmigen Quellensignal $q(t)$ mit dem Wertebereich $±q_{\rm max}$ und der Periodendauer $T_0$ aus. |
− | *Im mittleren Zeitbereich $-T_0/2 ≤ t ≤ T_0/2$ gilt: $q(t) = q_{\rm max} \cdot \left ( {2 \cdot t}/{T_0} \right ).$ | + | *Im mittleren Zeitbereich $-T_0/2 ≤ t ≤ T_0/2$ gilt: $q(t) = q_{\rm max} \cdot \left ( {2 \cdot t}/{T_0} \right ).$ |
− | *Die Leistung des Signals $q(t)$ bezeichnen wir hier als die Sendeleistung $P_{\rm S}$ . | + | *Die Leistung des Signals $q(t)$ bezeichnen wir hier als die Sendeleistung $P_{\rm S}$. |
− | $q(t)$ wird | + | Das Signal $q(t)$ wird gemäß der Grafik mit $M = 6$ Stufen quantisiert. Das quantisierte Signal ist $q_{\rm Q}(t)$, wobei gilt: |
− | *Der lineare Quantisierer ist für den Amplitudenbereich $±Q_{\rm max}$ ausgelegt, so dass jedes Quantisierungsintervall die Breite ${\it Δ} = 2/M · Q_{\rm max}$ aufweist. | + | *Der lineare Quantisierer ist für den Amplitudenbereich $±Q_{\rm max}$ ausgelegt, so dass jedes Quantisierungsintervall die Breite ${\it Δ} = 2/M · Q_{\rm max}$ aufweist. |
− | *Die Grafik zeigt diesen Sachverhalt für $Q_{\rm max} = q_{\rm max} = 6 \ \rm V$. Von diesen Zahlenwerten soll bis einschließlich Teilaufgabe (5) ausgegangen werden. | + | *Die Grafik zeigt diesen Sachverhalt für $Q_{\rm max} = q_{\rm max} = 6 \ \rm V$. Von diesen Zahlenwerten soll bis einschließlich Teilaufgabe '''(5)''' ausgegangen werden. |
− | Die so genannte '''Quantisierungsrauschleistung''' ist als der quadratische Mittelwert des Differenzsignals $ε(t) = q_{\rm Q}(t) | + | |
+ | Die so genannte '''Quantisierungsrauschleistung''' ist als der quadratische Mittelwert des Differenzsignals $ε(t) = q_{\rm Q}(t) - q(t)$ definiert. Es gilt | ||
:$$P_{\rm Q} = \frac{1}{T_0' } \cdot \int_{0}^{T_0'}\varepsilon(t)^2 \hspace{0.05cm}{\rm d}t \hspace{0.05cm},$$ | :$$P_{\rm Q} = \frac{1}{T_0' } \cdot \int_{0}^{T_0'}\varepsilon(t)^2 \hspace{0.05cm}{\rm d}t \hspace{0.05cm},$$ | ||
− | wobei die Zeit $T_0'$ geeignet zu wählen ist. | + | wobei die Zeit $T_0'$ geeignet zu wählen ist. |
+ | |||
+ | Als Quantisierungs–SNR bezeichnet man das Verhältnis $\rho_{\rm Q} = {P_{\rm S}}/{P_{\rm Q}}\hspace{0.05cm},$ das meist logarithmisch (in dB) angegeben wird. | ||
+ | |||
+ | |||
− | |||
''Hinweise:'' | ''Hinweise:'' | ||
− | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Pulscodemodulation|Pulscodemodulation]]. | + | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Pulscodemodulation|Pulscodemodulation]]. |
− | *Bezug genommen wird insbesondere auf die | + | *Bezug genommen wird insbesondere auf die Seite [[Modulationsverfahren/Pulscodemodulation#Quantisierung_und_Quantisierungsrauschen|Quantisierung und Quantisierungsrauschen]]. |
Line 30: | Line 34: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Berechnen Sie die Signalleistung $P_{\rm S}$ (auf den Widerstand $1 \ \rm Ω$ bezogen). | + | {Berechnen Sie die Signalleistung $P_{\rm S}$ (auf den Widerstand $1 \ \rm Ω$ bezogen). |
|type="{}"} | |type="{}"} | ||
$P_{\rm S} \ = \ $ { 12 3% } $\ \rm V^2$ | $P_{\rm S} \ = \ $ { 12 3% } $\ \rm V^2$ | ||
− | {Welche Aussagen treffen für das Fehlersignal $ε(t)$ zu? | + | {Welche Aussagen treffen für das Fehlersignal $ε(t)$ zu? |
|type="[]"} | |type="[]"} | ||
− | + $ε(t)$ hat einen sägezahnförmigen Verlauf. | + | + $ε(t)$ hat einen sägezahnförmigen Verlauf. |
− | - $ε(t)$ hat einen stufenförmigen Verlauf. | + | - $ε(t)$ hat einen stufenförmigen Verlauf. |
− | + $ε(t)$ ist auf den Bereich $±{\it Δ}/2 = ±1 \ \rm V$ beschränkt. | + | + $ε(t)$ ist auf den Bereich $±{\it Δ}/2 = ±1 \ \rm V$ beschränkt. |
− | + $ε(t)$ besitzt die Periodendauer $T_0' = T_0/M$. | + | + $ε(t)$ besitzt die Periodendauer $T_0' = T_0/M$. |
− | {Wie groß ist die Quantisierungsrauschleistung $P_{\rm Q}$ für $M=6$? | + | {Wie groß ist die Quantisierungsrauschleistung $P_{\rm Q}$ für $M=6$? |
|type="{}"} | |type="{}"} | ||
$P_{\rm Q} \ = \ $ { 0.333 3% } $\ \rm V^2$ | $P_{\rm Q} \ = \ $ { 0.333 3% } $\ \rm V^2$ | ||
− | {Berechnen Sie den Quantisierungsrauschabstand für $M = 6$. | + | {Berechnen Sie den Quantisierungsrauschabstand für $M = 6$. |
|type="{}"} | |type="{}"} | ||
$10 · \lg \ ρ_{\rm Q} \ = \ $ { 15.56 3% } $\ \rm dB$ | $10 · \lg \ ρ_{\rm Q} \ = \ $ { 15.56 3% } $\ \rm dB$ | ||
− | {Welche Werte ergeben sich bei Quantisierung mit $N = 8$ bzw. $N = 16$ Bit? | + | {Welche Werte ergeben sich bei Quantisierung mit $N = 8$ bzw. $N = 16$ Bit? |
|type="{}"} | |type="{}"} | ||
$N = 8\text{:}\hspace{0.35cm}10 · \lg \ ρ_{\rm Q} \ = \ $ { 48.16 3% } $\ \rm dB$ | $N = 8\text{:}\hspace{0.35cm}10 · \lg \ ρ_{\rm Q} \ = \ $ { 48.16 3% } $\ \rm dB$ | ||
$N = 16\text{:}\hspace{0.15cm}10 · \lg \ ρ_{\rm Q} \ = \ ${ 96.32 3% } $\ \rm dB$ | $N = 16\text{:}\hspace{0.15cm}10 · \lg \ ρ_{\rm Q} \ = \ ${ 96.32 3% } $\ \rm dB$ | ||
− | {Welche Voraussetzungen müssen erfüllt sein, damit die abgeleitete Gleichung für $ρ_{\rm Q}$ angewandt werden kann? | + | {Welche Voraussetzungen müssen erfüllt sein, damit die abgeleitete Gleichung für $ρ_{\rm Q}$ angewandt werden kann? |
|type="[]"} | |type="[]"} | ||
+ Alle Amplitudenwerte sind gleichwahrscheinlich. | + Alle Amplitudenwerte sind gleichwahrscheinlich. | ||
+ Es liegt ein linearer Quantisierer vor. | + Es liegt ein linearer Quantisierer vor. | ||
− | + Der Quantisierer ist genau an das Signal angepasst ( | + | + Der Quantisierer ist genau an das Signal angepasst $(Q_{\rm max} = q_{\rm max})$. |
Revision as of 17:56, 9 January 2019
Zur Berechnung der Quantisierungsrauschleistung $P_{\rm Q}$ gehen wir von einem periodischen sägezahnförmigen Quellensignal $q(t)$ mit dem Wertebereich $±q_{\rm max}$ und der Periodendauer $T_0$ aus.
- Im mittleren Zeitbereich $-T_0/2 ≤ t ≤ T_0/2$ gilt: $q(t) = q_{\rm max} \cdot \left ( {2 \cdot t}/{T_0} \right ).$
- Die Leistung des Signals $q(t)$ bezeichnen wir hier als die Sendeleistung $P_{\rm S}$.
Das Signal $q(t)$ wird gemäß der Grafik mit $M = 6$ Stufen quantisiert. Das quantisierte Signal ist $q_{\rm Q}(t)$, wobei gilt:
- Der lineare Quantisierer ist für den Amplitudenbereich $±Q_{\rm max}$ ausgelegt, so dass jedes Quantisierungsintervall die Breite ${\it Δ} = 2/M · Q_{\rm max}$ aufweist.
- Die Grafik zeigt diesen Sachverhalt für $Q_{\rm max} = q_{\rm max} = 6 \ \rm V$. Von diesen Zahlenwerten soll bis einschließlich Teilaufgabe (5) ausgegangen werden.
Die so genannte Quantisierungsrauschleistung ist als der quadratische Mittelwert des Differenzsignals $ε(t) = q_{\rm Q}(t) - q(t)$ definiert. Es gilt
- $$P_{\rm Q} = \frac{1}{T_0' } \cdot \int_{0}^{T_0'}\varepsilon(t)^2 \hspace{0.05cm}{\rm d}t \hspace{0.05cm},$$
wobei die Zeit $T_0'$ geeignet zu wählen ist.
Als Quantisierungs–SNR bezeichnet man das Verhältnis $\rho_{\rm Q} = {P_{\rm S}}/{P_{\rm Q}}\hspace{0.05cm},$ das meist logarithmisch (in dB) angegeben wird.
Hinweise:
- Die Aufgabe gehört zum Kapitel Pulscodemodulation.
- Bezug genommen wird insbesondere auf die Seite Quantisierung und Quantisierungsrauschen.
Fragebogen
Musterlösung
- $$P_{\rm S} = \frac{1}{T_0/2} \cdot \int_{0}^{T_0/2}q^2(t) \hspace{0.05cm}{\rm d}t = \frac{2 \cdot q_{\rm max}^2}{T_0} \cdot \int_{0}^{T_0/2}\left ( { 2 \cdot t}/{T_0} \right )^2 \hspace{0.05cm}{\rm d}t= \frac{2 \cdot q_{\rm max}^2}{T_0} \cdot \frac{T_0}{2} \cdot \int_{0}^{1}x^2 \hspace{0.05cm}{\rm d}x = \frac{q_{\rm max}^2}{3} \hspace{0.05cm}.$$
Hierbei wurde die Substitution $x = 2 · t/T_0$ verwendet. Mit $q_{\rm max} = 6 \ \rm V$ erhält man $P_\rm S = 12 \ V^2$.
(2) Richtig sind also die Lösungsvorschläge 1, 3 und 4:
- Wir gehen hier von $Q_{\rm max} = q_{\rm max} = 6 \ \rm V$ aus.
- Damit ergibt sich das sägezahnförmige Fehlersignal $ε(t)$ zwischen $±1\ \rm V$.
- Die Periodendauer ist $T_0' = T_0/6$.
(3) Das Fehlersignal $ε(t)$ verläuft ebenso wie $q(t)$ sägezahnförmig. Somit eignet sich zur Berechnung des quadratischen Mittelwertes dieselbe Gleichung wie in Teilaufgabe (1). Zu beachten ist allerdings die um den Faktor $M$ kleinere Amplitude, während die unterschiedliche Periodendauer für die Mittelung keine Rolle spielt:
- $$P_{\rm Q} = \frac{P_{\rm S}}{M^2} = \frac{12\,{\rm V}^2}{36}\hspace{0.15cm}\underline {= 0.333\,{\rm V}^2 }\hspace{0.05cm}.$$
(4) Die Ergebnisse der Teilaufgaben (1) und (3) führen zum Quantisierungs–SNR:
- $$\rho_{\rm Q} = \frac{P_{\rm S}}{P_{\rm Q}} = M^2 = 36 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q}\hspace{0.15cm}\underline { =15.56\,{\rm dB}} \hspace{0.05cm}.$$
(5) Mit $M = 2^N$ erhält man allgemein:
- $$ \rho_{\rm Q} = M^2 = 2^{2N} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} =20 \cdot {\rm lg}\hspace{0.1cm}(2)\cdot N \hspace{0.15cm}\underline {\approx 6.02\,{\rm dB}} \cdot N .$$
Daraus ergeben sich die gesuchten Sonderfälle:
- $$N = 8:\hspace{0.2cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} \hspace{0.15cm}\underline {= 48.16\,{\rm dB}}\hspace{0.05cm},$$
- $$N = 16:\hspace{0.2cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} \hspace{0.15cm}\underline { = 96.32\,{\rm dB}}\hspace{0.05cm}.$$
(6) Alle genannten Voraussetzungen müssen erfüllt sein:
- Bei nichtlinearer Quantisierung gilt der einfache Zusammenhang $ρ_{\rm Q} = M^2$ nicht.
- Bei einer anderen Amplitudenverteilung als der Gleichverteilung ist $ρ_{\rm Q} = M^2$ ebenfalls nur eine Näherung, die jedoch meist in Kauf genommen wird.
- Ist $Q_{\rm max} < q_{\rm max}$, so kommt es zu einem unzulässigen Abschneiden der Spitzen, während mit $Q_{\rm max} > q_{\rm max}$ die Quantisierungsintervalle größer sind als erforderlich.
Die Grafik zeigt die Fehlersignale $ε(t)$ für $Q_{\rm max} > q_{\rm max}$ (links) und $Q_{\rm max} < q_{\rm max}$ (rechts). In beiden Fällen ergibt sich eine deutlich größere Quantisierungsrauschleistung als unter Punkt (3) berechnet.