Difference between revisions of "Aufgaben:Exercise 2.3: Algebraic Sum of Binary Numbers"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID86__Sto_A_2_3.png|right|frame|Summe von Binärzahlen]]
+
[[File:P_ID86__Sto_A_2_3.png|right|frame|Betrachteter Zufallsgenerator]]
Ein Zufallsgenerator gibt zu jedem Taktzeitpunkt ($\nu$) eine binäre Zufallszahl $x_\nu$ ab, die $0$ oder $1$ sein kann.  
+
Ein Zufallsgenerator gibt zu jedem Taktzeitpunkt  $(\nu)$  eine binäre Zufallszahl  $x_\nu$  ab,  die  $0$  oder  $1$  sein kann.  
*Der Wert „1” tritt mit Wahrscheinlichkeit $p = 0.25$ auf.  
+
*Der Wert „1” tritt mit Wahrscheinlichkeit  $p = 0.25$  auf.  
*Die einzelnen Werte  $x_\nu$ seien statistisch voneinander unabhängig.
+
*Die einzelnen Werte  $x_\nu$  seien statistisch voneinander unabhängig.
  
  
Die Binärzahlen werden in ein Schieberegister mit $I = 6$ Speicherzellen abgelegt.  
+
Die Binärzahlen werden in ein Schieberegister mit  $I = 6$  Speicherzellen abgelegt.  
  
Zu jedem Taktzeitpunkt wird der Inhalt dieses Schieberegisters um eine Stelle nach rechts verschoben und jeweils die algebraische Summe $y_\nu$ der Schieberegisterinhalte gebildet:
+
Zu jedem Taktzeitpunkt wird der Inhalt dieses Schieberegisters um eine Stelle nach rechts verschoben und jeweils die algebraische Summe  $y_\nu$  der Schieberegisterinhalte gebildet:
 
:$$y_{\nu}=\sum\limits_{i=0}^{5}x_{\nu-i}=x_{\nu}+x_{\nu-1}+\ \text{...} \ +x_{\nu-5}.$$
 
:$$y_{\nu}=\sum\limits_{i=0}^{5}x_{\nu-i}=x_{\nu}+x_{\nu-1}+\ \text{...} \ +x_{\nu-5}.$$
 +
 +
 +
  
  
Line 18: Line 21:
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Binomialverteilung|Binomialverteilung]].
+
*Die Aufgabe gehört zum  Kapitel  [[Stochastische_Signaltheorie/Binomialverteilung|Binomialverteilung]].
 
   
 
   
*Zur Kontrolle Ihrer Ergebnisse können Sie das interaktive Applet [[Applets:Binomial-_und_Poissonverteilung_(Applet)|Binomial– und Poissonverteilung]] benutzen.
+
*Zur Kontrolle Ihrer Ergebnisse können Sie das interaktive Applet  [[Applets:Binomial-_und_Poissonverteilung_(Applet)|Binomial– und Poissonverteilung]]  benutzen.
  
  
Line 29: Line 32:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Werte kann die Summe $y$ annehmen? Was ist der gr&ouml;&szlig;tm&ouml;gliche Wert?
+
{Welche Werte kann die Summe&nbsp; $y$&nbsp; annehmen?&nbsp; Was ist der gr&ouml;&szlig;tm&ouml;gliche Wert?
 
|type="{}"}
 
|type="{}"}
 
$y_\max \ = \ $  { 6 3% }
 
$y_\max \ = \ $  { 6 3% }
  
  
{Berechnen Sie die Wahrscheinlichkeit, dass $y$ gr&ouml;&szlig;er als $2$ ist.
+
{Berechnen Sie die Wahrscheinlichkeit, dass&nbsp; $y$&nbsp; gr&ouml;&szlig;er als&nbsp; $2$&nbsp; ist.
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(y > 2) \ = \ $ { 0.169 3% }
 
${\rm Pr}(y > 2) \ = \ $ { 0.169 3% }
  
  
{Wie gro&szlig; ist der Mittelwert der Zufallsgr&ouml;&szlig;e $y$?
+
{Wie gro&szlig; ist der Mittelwert der Zufallsgr&ouml;&szlig;e&nbsp; $y$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$m_y \ =$ { 1.5 3% }
 
$m_y \ =$ { 1.5 3% }
  
  
{Ermitteln Sie die Streuung der Zufallsgr&ouml;&szlig;e $y$.  
+
{Ermitteln Sie die Streuung der Zufallsgr&ouml;&szlig;e&nbsp; $y$.  
 
|type="{}"}
 
|type="{}"}
 
$\sigma_y \ = \ $ { 1.061 3% }
 
$\sigma_y \ = \ $ { 1.061 3% }
  
  
{Sind die Zufallszahlen $y_\nu$ unabh&auml;ngig? Begr&uuml;nden Sie Ihr Ergebnis.
+
{Sind die Zufallszahlen&nbsp; $y_\nu$&nbsp; statistisch unabh&auml;ngig?&nbsp; Begr&uuml;nden Sie Ihr Ergebnis.
 
|type="[]"}
 
|type="[]"}
 
- Die Zufallszahlen sind statistisch unabh&auml;ngig.
 
- Die Zufallszahlen sind statistisch unabh&auml;ngig.
Line 55: Line 58:
  
  
{Wie groß ist die bedingte Wahrscheinlichkeit, dass $y_\nu$ wieder gleich $\mu$ ist, wenn vorher $y_{\nu-1} = \mu$ aufgetreten ist? ($\mu = 0,1, \ \text{...} \ , I$).
+
{Wie groß ist die bedingte Wahrscheinlichkeit, dass&nbsp; $y_\nu$&nbsp; wieder gleich&nbsp; $\mu$&nbsp; ist, wenn vorher&nbsp; $y_{\nu-1} = \mu$&nbsp; aufgetreten ist?&nbsp; $(\mu = 0, \ 1, \ \text{...} \ , \ I)$.
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(y_\nu = \mu \hspace{0.05cm} | \hspace{0.05cm} y_{\nu-1} = \mu ) \ = \ $ { 0.625 3% }
 
${\rm Pr}(y_\nu = \mu \hspace{0.05cm} | \hspace{0.05cm} y_{\nu-1} = \mu ) \ = \ $ { 0.625 3% }

Revision as of 13:57, 13 November 2019

Betrachteter Zufallsgenerator

Ein Zufallsgenerator gibt zu jedem Taktzeitpunkt  $(\nu)$  eine binäre Zufallszahl  $x_\nu$  ab,  die  $0$  oder  $1$  sein kann.

  • Der Wert „1” tritt mit Wahrscheinlichkeit  $p = 0.25$  auf.
  • Die einzelnen Werte  $x_\nu$  seien statistisch voneinander unabhängig.


Die Binärzahlen werden in ein Schieberegister mit  $I = 6$  Speicherzellen abgelegt.

Zu jedem Taktzeitpunkt wird der Inhalt dieses Schieberegisters um eine Stelle nach rechts verschoben und jeweils die algebraische Summe  $y_\nu$  der Schieberegisterinhalte gebildet:

$$y_{\nu}=\sum\limits_{i=0}^{5}x_{\nu-i}=x_{\nu}+x_{\nu-1}+\ \text{...} \ +x_{\nu-5}.$$




Hinweise:



Fragebogen

1

Welche Werte kann die Summe  $y$  annehmen?  Was ist der größtmögliche Wert?

$y_\max \ = \ $

2

Berechnen Sie die Wahrscheinlichkeit, dass  $y$  größer als  $2$  ist.

${\rm Pr}(y > 2) \ = \ $

3

Wie groß ist der Mittelwert der Zufallsgröße  $y$ ?

$m_y \ =$

4

Ermitteln Sie die Streuung der Zufallsgröße  $y$.

$\sigma_y \ = \ $

5

Sind die Zufallszahlen  $y_\nu$  statistisch unabhängig?  Begründen Sie Ihr Ergebnis.

Die Zufallszahlen sind statistisch unabhängig.
Die Zufallszahlen sind statistisch abhängig.

6

Wie groß ist die bedingte Wahrscheinlichkeit, dass  $y_\nu$  wieder gleich  $\mu$  ist, wenn vorher  $y_{\nu-1} = \mu$  aufgetreten ist?  $(\mu = 0, \ 1, \ \text{...} \ , \ I)$.

${\rm Pr}(y_\nu = \mu \hspace{0.05cm} | \hspace{0.05cm} y_{\nu-1} = \mu ) \ = \ $


Musterlösung

(1)  In jeder Zelle kann eine $0$ oder eine $1$ stehen; deshalb kann die Summe alle ganzzahligen Werte zwischen $0$ und $6$ annehmen:

$$y_{\nu}\in\{0,1,\ \text{...} \ ,6\}\hspace{0.3cm}\Rightarrow\hspace{0.3cm} y_{\rm max} \hspace{0.15cm} \underline{= 6}.$$


(2)  Es liegt eine Binomialverteilung vor. Daher gilt mit $p = 0.25$:

$${\rm Pr}(y =0)=(1-p)^{\it I}=0.75^6=0.178,$$
$${\rm Pr}(y=1)=\left({ I \atop {1}}\right)\cdot (1-p)^{I-1}\cdot p= \rm 6\cdot 0.75^5\cdot 0.25=0.356,$$
$${\rm Pr}(y=2)=\left({ I \atop { 2}}\right)\cdot (1-p)^{I-2}\cdot p^{\rm 2}= \rm 15\cdot 0.75^4\cdot 0.25^2=0.297,$$
$$\Rightarrow \hspace{0.3cm}{\rm Pr}(y>2)=1-{\rm Pr}(y=0)-{\rm Pr}( y=1)-{\rm Pr}( y=2)\hspace{0.15cm} \underline{=\rm 0.169}.$$


(3)  Nach der allgemeinen Gleichung gilt für den Mittelwert der Binomialverteilung:

$$m_y= I\cdot p\hspace{0.15cm} \underline{=\rm 1.5}.$$


(4)  Entsprechend gilt für die Streuung der Binomialverteilung:

$$\sigma_y=\sqrt{ I \cdot p \cdot( 1- p)} \hspace{0.15cm} \underline{= \rm 1.061}.$$


(5)  Richtig ist der Lösungsvorschlag 2:

  • Ist $y_\nu = 0$, so können zum nächsten Zeitpunkt nur die Werte $0$ und $1$ folgen, nicht aber $2$, ... , $6$.
  • Das heißt:   Die Folge $ \langle y_\nu \rangle$ weist (starke) statistische Bindungen auf.


(6)  Die gesuchte Wahrscheinlichkeit ist identisch mit der Wahrscheinlichkeit dafür, dass das neue Binärsymbol gleich dem aus dem Schieberegister herausgefallenen Symbol ist. Daraus folgt:

$${\rm Pr} (y_{\nu} = \mu\hspace{0.05cm}| \hspace{0.05cm} y_{\nu-{1}} = \mu) = {\rm Pr}(x_{\nu}= x_{\nu-6}). $$

Da die Symbole $x_\nu$ statistisch voneinander unabhängig sind, kann hierfür auch geschrieben werden:

$${\rm Pr}(x_{\nu} = x_{\nu-6}) = {\rm Pr}\big[(x_{\nu}= 1)\hspace{0.05cm}\cap\hspace{0.05cm}(x_{\nu-6}= 1)\hspace{0.05cm}\cup \hspace{0.05cm}(x_\nu=0)\hspace{0.05cm}\cap\hspace{0.05cm}(x_{\nu-6} =0)\big]= p^{2}+(1- p)^{2}=\rm 0.25^2 + 0.75^2\hspace{0.15cm} \underline{ = 0.625}. $$