Difference between revisions of "Applets:Bessel functions of the first kind"
Line 75: | Line 75: | ||
===Anwendungen der Besselfunktionen=== | ===Anwendungen der Besselfunktionen=== | ||
− | Die Anwendungen der Besselfunktionen in den Natur– und Ingenieurswissenschaften sind vielfältig. Wir beschränken uns | + | Die Anwendungen der Besselfunktionen in den Natur– und Ingenieurswissenschaften sind vielfältig und spielen eine wichtige Rolle in der Physik, zum Beispiel: |
− | + | *Untersuchung von Eigenschwingungen von zylindrischen Resonatoren, | |
+ | *Lösung der radialen Schrödinger–Gleichung, | ||
+ | *Schalldruckamplituden von dünnflüssgigen Rotationsströmen, | ||
+ | *Wärmeleitung in zylindrischen Körpern, | ||
+ | *Streuungsproblem eines Gitters, | ||
+ | *Dynamik von Schwingkörpern, | ||
+ | *Winkelauflösung. | ||
+ | |||
+ | Man zählt die Besselfunktionen wegen ihrer vielfältigen Anwendungen in der mathematischen Physik zu den speziellen Funktionen. | ||
+ | |||
+ | Wir beschränken uns im Folgenden auf einige Gebiete, die in unserem Lerntutorial $\rm LNTwww$ angesprochen werden. | ||
+ | |||
+ | '''Im enlischen Original''' | ||
+ | Electromagnetic waves in a cylindrical waveguide | ||
+ | Pressure amplitudes of inviscid rotational flows | ||
+ | Heat conduction in a cylindrical object | ||
+ | Modes of vibration of a thin circular (or annular) acoustic membrane (such as a drum or other membranophone) | ||
+ | Diffusion problems on a lattice | ||
+ | Solutions to the radial Schrödinger equation (in spherical and cylindrical coordinates) for a free particle | ||
+ | Solving for patterns of acoustical radiation | ||
+ | Frequency-dependent friction in circular pipelines | ||
+ | Dynamics of floating bodies | ||
+ | Angular resolution | ||
+ | '''Ende''' | ||
+ | |||
+ | {{GraueBox|TEXT= | ||
+ | $\text{Beispiel (C) – Einsatz in der Spektralanalyse} \ \Rightarrow \ \text{Kaiser-Bessel-Filter}$ | ||
+ | |||
+ | Als '''spektralen Leckeffekt''' bezeichnet man die Verfälschung des Spektrums eines periodischen und damit zeitlich unbegrenzten Signals aufgrund der impliziten Zeitbegrenzung der Diskreten Fouriertransformation (DFT). Dadurch werden zum Beispiel von einem Spektrumanalyzer | ||
+ | *im Zeitsignal nicht vorhandene Frequenzanteile vorgetäuscht, und/oder | ||
+ | *tatsächlich vorhandene Spektralkomponenten durch Seitenkeulen verdeckt. | ||
+ | |||
+ | Aufgabe der [[Signaldarstellung/Spektralanalyse|Spektralanalyse]] ist es}} | ||
+ | [[File:Mod_T_3_1_S4_version2.png|right|frame|Spektrum des analytischen Signals bei Phasenmodulation]] | ||
+ | :$$S_{\rm +}(f) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta \big[f - (f_{\rm T}+ n \cdot f_{\rm N})\big]\hspace{0.05cm}.$$ | ||
+ | Hierbei bezeichnen | ||
+ | *$f_{\rm T}$ die Trägerfrequenz, | ||
+ | *$f_{\rm N}$ die Nachrichtenfrequenz, | ||
+ | * $A_{\rm T}$ die Trägeramplitude. | ||
+ | |||
+ | *Analyse des Frequenzspektrums von frequenzmodulierten Signalen, | ||
+ | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | |||
+ | |||
+ | |||
+ | Bessel functions also appear in other problems, such as signal processing (e.g., see FM synthesis, Kaiser window, or Bessel filter). | ||
Line 101: | Line 135: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Revision as of 15:54, 9 August 2018
Contents
Programmbeschreibung
Dieses Applet ermöglicht die Berechnung und graphische Darstellung der Besselfunktionen erster Art und $n$–ter Ordnung entsprechend der Reihendarstellung:
- $${\rm J}_n (x) = \sum\limits_{k=0}^{\infty}\frac{(-1)^k \cdot (x/2)^{n \hspace{0.05cm} + \hspace{0.05cm} 2 \hspace{0.02cm}\cdot \hspace{0.05cm}k}}{k! \cdot (n+k)!} \hspace{0.05cm}.$$
- Graphisch dargestellt können die Funktionen ${\rm J}_n (x)$ für die Ordnung $n=0$ bis $n=9$ in verschiedenen Farben werden.
- Die linke Ausgabe liefert die Funktionswerte ${\rm J}_0 (x = x_1)$, ... , ${\rm J}_9 (x = x_1)$ für einen per Slider einstellbaren Wert $x_1$ im Bereich $0 \le x_1 \le 15$ mit Schrittweite $0.5$.
- Die rechte Ausgabe liefert die Funktionswerte ${\rm J}_0 (x = x_2)$, ... , ${\rm J}_9 (x = x_2)$ für einen per Slider einstellbaren Wert $x_2$ (gleicher Wertebereich und Schrittweite wie links).
Theoretischer Hintergrund
Allgemeines zu den Besselfunktionen
Besselfunktionen (oder auch Zylinderfunktionen) sind Lösungen der Besselschen Differentialgleichung der Form
- $$x^2 \cdot \frac{ {\rm d}^2}{{\rm d}x^2}\ {\rm J}_n (x) \ + \ x \cdot \frac{ {\rm d}}{{\rm d}x}\ {\rm J}_n (x) \ + \ (x^2 - n^2) \cdot {\rm J}_n (x)= 0. $$
Hierbei handelt es sich um eine gewöhnliche lineare Differentialgleichung zweiter Ordnung. Der Parameter $n$ ist meistens ganzzahlig, so auch in diesem Programm. Diese bereits 1844 von Friedrich Wilhelm Bessel eingeführten mathematischen Funktionen können auch in geschlossener Form als Integrale dargestellt werden:
- $${\rm J}_n (x) = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {{\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}[\hspace{0.05cm}x \hspace{0.05cm}\cdot \hspace{0.05cm}\sin(\alpha) -\hspace{0.05cm} n \hspace{0.05cm}\cdot \hspace{0.05cm}\alpha \hspace{0.05cm}]}}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm}.$$
Die Funktionen ${\rm J}_n (x)$ gehören zur Klasse der Besselfunktionen erster Art (englisch: Bessel Functions of the First Kind). Den Parameter $n$ nennt man die Ordnung.
Anmerkung: Es gibt eine Vielzahl von Abwandlungen der Besselfunktionen, unter anderem die mit ${\rm Y}_n (x)$ benannten Besselfunktionen zweiter Art. Für ganzzahliges $n$ lässt sich ${\rm Y}_n (x)$ durch ${\rm J}_n (x)$–Funktionen ausdrücken. In diesem Applet werden jedoch nur die Besselfunktionen erster Art ⇒ ${\rm J}_n (x)$ betrachtet.
Eigenschaften der Besselfunktionen
$\text{Eigenschaft (A):}$ Sind die Funktionswerte für $n = 0$ und $n = 1$ bekannt, so können daraus die Besselfunktionen für $n ≥ 2$ iterativ ermittelt werden:
- $${\rm J}_n (x) ={2 \cdot (n-1)}/{x} \cdot {\rm J}_{n-1} (x) - {\rm J}_{n-2} (x) \hspace{0.05cm}.$$
$\text{Beispiel (A):}$ Es gelte ${\rm J}_0 (x = 2) = 0.22389$ und ${\rm J}_1 (x= 2) = 0.57672$. Daraus können iterativ berechnet werden:
- $${\rm J}_2 (x= 2) ={2 \cdot 1}/{2} \cdot {\rm J}_{1} (x= 2) - {\rm J}_{0} (x= 2) = 0.57672 - 0.22389 = \hspace{0.15cm}\underline{0.35283}\hspace{0.05cm},$$
- $${\rm J}_3 (x= 2) ={2 \cdot 2}/{2} \cdot {\rm J}_{2} (x= 2) - {\rm J}_{1} (x= 2) = 2 \cdot 0.35283 - 0.57672 = \hspace{0.15cm}\underline{0.12894}\hspace{0.05cm},$$
- $${\rm J}_4 (x= 2) ={2 \cdot 3}/{2} \cdot {\rm J}_{3} (x= 2) - {\rm J}_{2} (x= 2) = 3 \cdot 0.12894 - 0.35283 = \hspace{0.15cm}\underline{0.03400}\hspace{0.05cm}.$$
$\text{Eigenschaft (B):}$ Es gilt die Symmetriebeziehung ${\rm J}_{–n}(x) = (–1)^n · {\rm J}_n(x)$:
- $${\rm J}_{-1}(x) = - {\rm J}_{1}(x), \hspace{0.3cm}{\rm J}_{-2}(x) = {\rm J}_{2}(x), \hspace{0.3cm}{\rm J}_{-3}(x) = - {\rm J}_{3}(x).$$
$\text{Beispiel (B):}$ Für das Spektrum des analytischen Signals gilt bei Phasenmodulation eines Sinussignals:
- $$S_{\rm +}(f) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta \big[f - (f_{\rm T}+ n \cdot f_{\rm N})\big]\hspace{0.05cm}.$$
Hierbei bezeichnen
- $f_{\rm T}$ die Trägerfrequenz,
- $f_{\rm N}$ die Nachrichtenfrequenz,
- $A_{\rm T}$ die Trägeramplitude.
Der Parameter der Besselfunktionen ist bei dieser Anwendung der Modulationsindex $\eta$.
Anhand der Grafik sind folgende Aussagen möglich:
- $S_+(f)$ besteht hier aus unendlich vielen diskreten Linien im Abstand von $f_{\rm N}$.
- Es ist somit prinzipiell unendlich weit ausgedehnt.
- Die Gewichte der Spektrallinien bei $f_{\rm T} + n · f_{\rm N}$ ($n$ ganzzahlig) sind durch den Modulationsindex $η$ über die Besselfunktionen ${\rm J}_n(η)$ festgelegt.
- Die Spektrallinien sind bei sinusförmigem Quellensignal und cosinusförmigem Träger reell und für gerades $n$ symmetrisch um $f_{\rm T}$.
- Bei ungeradem $n$ ist ein Vorzeichenwechsel entsprechend der $\text{Eigenschaft (B)}$ zu berücksichtigen.
- Die Phasenmodulation einer Schwingung mit anderer Phase von Quellen– und/oder Trägersignal liefert das gleiche Betragsspektrum.
Anwendungen der Besselfunktionen
Die Anwendungen der Besselfunktionen in den Natur– und Ingenieurswissenschaften sind vielfältig und spielen eine wichtige Rolle in der Physik, zum Beispiel:
- Untersuchung von Eigenschwingungen von zylindrischen Resonatoren,
- Lösung der radialen Schrödinger–Gleichung,
- Schalldruckamplituden von dünnflüssgigen Rotationsströmen,
- Wärmeleitung in zylindrischen Körpern,
- Streuungsproblem eines Gitters,
- Dynamik von Schwingkörpern,
- Winkelauflösung.
Man zählt die Besselfunktionen wegen ihrer vielfältigen Anwendungen in der mathematischen Physik zu den speziellen Funktionen.
Wir beschränken uns im Folgenden auf einige Gebiete, die in unserem Lerntutorial $\rm LNTwww$ angesprochen werden.
Im enlischen Original Electromagnetic waves in a cylindrical waveguide Pressure amplitudes of inviscid rotational flows Heat conduction in a cylindrical object Modes of vibration of a thin circular (or annular) acoustic membrane (such as a drum or other membranophone) Diffusion problems on a lattice Solutions to the radial Schrödinger equation (in spherical and cylindrical coordinates) for a free particle Solving for patterns of acoustical radiation Frequency-dependent friction in circular pipelines Dynamics of floating bodies Angular resolution Ende
$\text{Beispiel (C) – Einsatz in der Spektralanalyse} \ \Rightarrow \ \text{Kaiser-Bessel-Filter}$
Als spektralen Leckeffekt bezeichnet man die Verfälschung des Spektrums eines periodischen und damit zeitlich unbegrenzten Signals aufgrund der impliziten Zeitbegrenzung der Diskreten Fouriertransformation (DFT). Dadurch werden zum Beispiel von einem Spektrumanalyzer
- im Zeitsignal nicht vorhandene Frequenzanteile vorgetäuscht, und/oder
- tatsächlich vorhandene Spektralkomponenten durch Seitenkeulen verdeckt.
Aufgabe der Spektralanalyse ist es
- $$S_{\rm +}(f) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta \big[f - (f_{\rm T}+ n \cdot f_{\rm N})\big]\hspace{0.05cm}.$$
Hierbei bezeichnen
- $f_{\rm T}$ die Trägerfrequenz,
- $f_{\rm N}$ die Nachrichtenfrequenz,
- $A_{\rm T}$ die Trägeramplitude.
- Analyse des Frequenzspektrums von frequenzmodulierten Signalen,
Bessel functions also appear in other problems, such as signal processing (e.g., see FM synthesis, Kaiser window, or Bessel filter).
Zur Handhabung des Applets
(A) Vorauswahl für blauen Parametersatz
(B) Parametereingabe $I$ und $p$ per Slider
(C) Vorauswahl für roten Parametersatz
(D) Parametereingabe $\lambda$ per Slider
(E) Graphische Darstellung der Verteilungen
(F) Momentenausgabe für blauen Parametersatz
(G) Momentenausgabe für roten Parametersatz
(H) Variation der grafischen Darstellung
$\hspace{1.5cm}$„$+$” (Vergrößern),
$\hspace{1.5cm}$ „$-$” (Verkleinern)
$\hspace{1.5cm}$ „$\rm o$” (Zurücksetzen)
$\hspace{1.5cm}$ „$\leftarrow$” (Verschieben nach links), usw.
( I ) Ausgabe von ${\rm Pr} (z = \mu)$ und ${\rm Pr} (z \le \mu)$
(J) Bereich für die Versuchsdurchführung
Andere Möglichkeiten zur Variation der grafischen Darstellung:
- Gedrückte Shifttaste und Scrollen: Zoomen im Koordinatensystem,
- Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems.
Über die Autoren
Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.
- Die erste Version wurde 2006 von Markus Elsberger und Slim Lamine im Rahmen von Abschlussarbeiten mit „FlashMX–Actionscript” erstellt (Betreuer: Günter Söder).
- 2018 wurde das Programm von Xiaohan Liu (Bachelorarbeit, Betreuer: Tasnád Kernetzky ) auf „HTML5” umgesetzt.