Difference between revisions of "Aufgaben:Exercise 3.1: Probabilities when Rolling Dice"
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID2749__Inf_A_3_1.png|right|frame|Summe $S$ zweier Würfel]] | + | [[File:P_ID2749__Inf_A_3_1.png|right|frame|Summe $S$ zweier Würfel]] |
− | Wir betrachten das Zufallsexperiment „Würfeln mit ein oder zwei Würfeln”. Beide Würfel sind fair (die sechs möglichen Ergebnisse sind gleichwahrscheinlich) und durch ihre Farben unterscheidbar: | + | Wir betrachten das Zufallsexperiment „Würfeln mit ein oder zwei Würfeln”. Beide Würfel sind fair (die sechs möglichen Ergebnisse sind gleichwahrscheinlich) und durch ihre Farben unterscheidbar: |
− | * Die Zufallsgröße $R = \{1, 2, 3, 4, 5, 6 \}$ bezeichnet die Augenzahl des roten Würfels. | + | * Die Zufallsgröße $R = \{1, \ 2,\ 3,\ 4,\ 5,\ 6 \}$ bezeichnet die Augenzahl des roten Würfels. |
− | * Die Zufallsgröße $B = \{1, 2, 3, 4, 5, 6 \}$ bezeichnet die Augenzahl des blauen Würfels. | + | * Die Zufallsgröße $B = \{1,\ 2,\ 3,\ 4,\ 5,\ 6 \}$ bezeichnet die Augenzahl des blauen Würfels. |
− | * Die Zufallsgröße $S =R + B$ steht für die Summe beider Würfel. | + | * Die Zufallsgröße $S =R + B$ steht für die Summe beider Würfel. |
+ | |||
+ | |||
+ | In dieser Aufgabe sollen verschiedene Wahrscheinlichkeiten mit Bezug zu den Zufallsgrößen $R$, $B$ und $S$ berechnet werden, wobei das oben angegebene Schema hilfreich sein kann. Dieses beinhaltet die Summe $S$ in Abhängigkeit von $R$ und $B$. | ||
+ | |||
− | |||
Line 18: | Line 21: | ||
''Hinweise:'' | ''Hinweise:'' | ||
− | *Die Aufgabe gehört zum Kapitel [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Einige Vorbemerkungen zu den 2D-Zufallsgrößen]]. | + | *Die Aufgabe gehört zum Kapitel [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Einige Vorbemerkungen zu den 2D-Zufallsgrößen]]. |
− | *Wiederholt wird hier insbesondere der Lehrstoff des Kapitels [[Stochastische_Signaltheorie/Einige_grundlegende_Definitionen|Wahrscheinlichkeitsrechnung]] im Buch „Stochastische Signaltheorie”. | + | *Wiederholt wird hier insbesondere der Lehrstoff des Kapitels [[Stochastische_Signaltheorie/Einige_grundlegende_Definitionen|Wahrscheinlichkeitsrechnung]] im Buch „Stochastische Signaltheorie”. |
Line 47: | Line 50: | ||
− | {Wie groß ist die Wahrscheinlichkeit, dass beim $L$–ten Doppelwurf zum ersten Mal eine „6” dabei ist? | + | {Wie groß ist die Wahrscheinlichkeit, dass beim $L$–ten Doppelwurf zum ersten Mal eine „6” dabei ist? |
|type="{}"} | |type="{}"} | ||
$L = 1\text{:}\hspace{0.5cm}\text{Pr(erste „6”)} \ = \ $ { 0.3056 3% } | $L = 1\text{:}\hspace{0.5cm}\text{Pr(erste „6”)} \ = \ $ { 0.3056 3% } | ||
Line 54: | Line 57: | ||
− | {Wie groß ist die Wahrscheinlichkeit „Um die erste „6” zu erhalten, benötigt man eine geradzahlige Anzahl an Doppelwürfen | + | {Wie groß ist die Wahrscheinlichkeit „Um die erste „6” zu erhalten, benötigt man eine geradzahlige Anzahl an Doppelwürfen? <br>Mit der Nomenklatur gemäß Teilaufgabe '''(4)''': |
|type="{}"} | |type="{}"} | ||
− | $\text{Pr(}L\text{ ist geradzahlig)}\ = \ $ { 0.4098 3% } | + | $\text{Pr(}L\text{ ist geradzahlig)}\ = \ $ { 0.4098 3% } |
</quiz> | </quiz> |
Revision as of 12:27, 30 January 2020
Wir betrachten das Zufallsexperiment „Würfeln mit ein oder zwei Würfeln”. Beide Würfel sind fair (die sechs möglichen Ergebnisse sind gleichwahrscheinlich) und durch ihre Farben unterscheidbar:
- Die Zufallsgröße $R = \{1, \ 2,\ 3,\ 4,\ 5,\ 6 \}$ bezeichnet die Augenzahl des roten Würfels.
- Die Zufallsgröße $B = \{1,\ 2,\ 3,\ 4,\ 5,\ 6 \}$ bezeichnet die Augenzahl des blauen Würfels.
- Die Zufallsgröße $S =R + B$ steht für die Summe beider Würfel.
In dieser Aufgabe sollen verschiedene Wahrscheinlichkeiten mit Bezug zu den Zufallsgrößen $R$, $B$ und $S$ berechnet werden, wobei das oben angegebene Schema hilfreich sein kann. Dieses beinhaltet die Summe $S$ in Abhängigkeit von $R$ und $B$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Einige Vorbemerkungen zu den 2D-Zufallsgrößen.
- Wiederholt wird hier insbesondere der Lehrstoff des Kapitels Wahrscheinlichkeitsrechnung im Buch „Stochastische Signaltheorie”.
Fragebogen
Musterlösung
- mit dem roten Würfel eine „6” geworfen wird:
- $$\underline{{\rm Pr}(R=6) = 1/6} = 0.1667 \hspace{0.05cm},$$
- mit dem blauen Würfel eine „1” oder eine „2” geworfen wird:
- $$\underline{{\rm Pr}(B\le 2) = 1/3} = 0.3333 \hspace{0.05cm},$$
- beide Würfel die gleiche Augenzahl anzeigen:
- $$\underline{{\rm Pr}(R=B) = 6/36} = 0.1667 \hspace{0.05cm}.$$
Letzteres basiert auf der 2D–Darstellung auf dem Augenblatt sowie auf der „Klassischen Definition der Wahrscheinlichkeit” entsprechend $K/M$:
- $K = 6$ der insgesamt $M = 36$ gleichwahrscheinlichen Elementarereignisse $R \cap B$ können dem hieraus abgeleiteten Ereignis $R=B$ zugeordnet werden.
- Diese liegen auf der Diagonalen. Würfelspieler sprechen in diesem Fall von einem „Pasch”.
(2) Die Lösung basiert wieder auf der Klassischen Definition der Wahrscheinlichkeit:
- In $K = 2$ der $M = 36$ Elementarfelder steht eine „3”: ${\rm Pr}(S = 3) = 2/36\hspace{0.15cm}\underline{ = 0.0556}.$
- In $K = 6$ der $M = 36$ Elementarfelder steht eine „7”: ${\rm Pr}(S = 7) = 6/36\hspace{0.15cm}\underline{ = 0.1667}.$
- In $K = 18$ der $M = 36$ Felder steht eine ungerade Zahl ⇒ ${\rm Pr}(S\text{ ist ungerade}) = 18/36\hspace{0.15cm}\underline{ = 0.5}.$
Dieses letzte Ergebnis könnte man auch auf anderem Wege erhalten:
- $${\rm Pr}(S\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}) = {\rm Pr}\big [(R\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade}) \cap (B\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade}) \big ] + {\rm Pr}\big [(R\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade}) \cap (B\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade})\big ]\hspace{0.05cm}. $$
Mit ${\rm Pr}(R\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade}) = {\rm Pr} (R\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade}) = {\rm Pr}(B\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade})= {\rm Pr}(B\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade}) = 1/2$ folgt daraus ebenfalls:
- $${\rm Pr}(S\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}) = 1/2 \cdot 1/2 + 1/2 \cdot 1/2 = 1/2 \hspace{0.05cm}.$$
(3) Die Wahrscheinlichkeit für das Ereignis, dass mindestens einer der beiden Würfel eine „6” zeigt, ist:
- $${\rm Pr}\big [(R= 6) \cup (B= 6) \big ] = K/M = 11/36 \hspace{0.15cm} \underline{= 0.3056} \hspace{0.05cm}.$$
Die zweite Wahrscheinlichkeit steht allein für den „Sechser–Pasch”:
- $${\rm Pr}\big [(R= 6) \cap (B= 6) \big ] = K/M = 1/36 \hspace{0.15cm} \underline{= 0.0278} \hspace{0.05cm}.$$
(4) Das Ergebnis für $L = 1$ wurde bereits in der Teilaufgabe (3) ermittelt:
- $$p_1 = {\rm Pr}\big [(R= 6) \cup (B= 6) \big ] = {11}/{36} \hspace{0.15cm} \underline{= 0.3056} \hspace{0.05cm}.$$
- Die Wahrscheinlichkeit $p_2$ lässt sich mit $p_1$ wie folgt ausdrücken:
- $$p_2 = (1 - p_1) \cdot p_1 = \frac{25}{36} \cdot \frac{11}{36} \hspace{0.15cm} \underline{= 0.2122} \hspace{0.05cm}. $$
- In Worten: Die Wahrscheinlichkeit, dass im zweiten Wurf erstmals eine „6” geworfen wird, ist gleich der Wahrscheinlichkeit, dass im ersten Wurf keine „6” geworfen wurde ⇒ Wahrscheinlichkeit $1-p_1$, aber im zweiten Wurf mindestens eine „6” dabei ist ⇒ Wahrscheinlichkeit $p_1$.
- Entsprechend gilt für die Wahrscheinlichkeit „erste 6 im dritten Wurf”:
- $$p_3 = (1 - p_1)^2 \cdot p_1 = \frac{25}{36} \cdot \frac{25}{36} \cdot\frac{11}{36} \hspace{0.15cm} \underline{= 0.1474} \hspace{0.05cm}.$$
(5) Durch Erweiterung der Musterlösung zur Teilaufgabe (4) erhält man:
- $$\text{Pr(gerades L)}= p_2 \hspace{-0.05cm}+ \hspace{-0.05cm}p_4 \hspace{-0.05cm}+ \hspace{-0.05cm} p_6 \hspace{-0.05cm}+ \hspace{-0.05cm} \text{...} = (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1) \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^3 \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm}(1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^5 \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm} \text{...} = (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1) \cdot p_1 \cdot \left [ 1 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^2 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^4 +\text{...}\hspace{0.05cm} \right ] \hspace{0.05cm}. $$
Entsprechend erhält man für die Wahrscheinlichkeit des Komplementärereignisses:
- $${\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} ungeradzahlig}) = p_1 + p_3 + p_5 + \text{...} = p_1 \cdot \left [ 1 + (1 - p_1)^2 + (1 - p_1)^4 + \text{...} \hspace{0.15cm} \right ] \hspace{0.05cm}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{{\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} ungeradzahlig}) } {{\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} geradzahlig})} = \frac{1}{1 - p_1} \hspace{0.05cm}. $$
Weiter muss gelten:
- $${\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} geradzahlig}) + {\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} ungeradzahlig}) = 1$$
- $$\Rightarrow \hspace{0.3cm} {\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} geradzahlig}) \cdot \left [ 1 + \frac{1}{1 - p_1} \right ] = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} geradzahlig}) = \frac{1 - p_1}{2 - p_1} = \frac{25/36}{61/36} = \frac{25}{61} \hspace{0.15cm} \underline{= 0.4098} \hspace{0.05cm}.$$