Difference between revisions of "Aufgaben:Exercise 3.1: Causality Considerations"

From LNTwww
Line 8: Line 8:
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
  
wobei $f_{\rm G}$ die 3dB–Grenzfrequenz angibt:
+
wobei  $f_{\rm G}$  die 3dB–Grenzfrequenz angibt:
 
:$$f_{\rm G} = \frac{R}{2 \pi \cdot L}
 
:$$f_{\rm G} = \frac{R}{2 \pi \cdot L}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Line 22: Line 22:
 
In dieser Aufgabe wird ein solcher Vierpol im Hinblick auf seine Kausalitätseigenschaften betrachtet.  
 
In dieser Aufgabe wird ein solcher Vierpol im Hinblick auf seine Kausalitätseigenschaften betrachtet.  
  
Bei einem jeden kausalen System erfüllen der Real– und der Imaginärteil der Spektralfunktion  $H(f)$  die [[Lineare_zeitinvariante_Systeme/Folgerungen_aus_dem_Zuordnungssatz#Hilbert.E2.80.93Transformation|Hilbert–Transformation]], was durch das folgende Kurzzeichen ausgedrückt wird:
+
Bei einem jeden kausalen System erfüllen der Real– und der Imaginärteil der Spektralfunktion  $H(f)$  die  [[Lineare_zeitinvariante_Systeme/Folgerungen_aus_dem_Zuordnungssatz#Hilbert.E2.80.93Transformation|Hilbert–Transformation]], was durch das folgende Kurzzeichen ausgedrückt wird:
 
:$${\rm Im} \left\{ H(f) \right \}  \quad
 
:$${\rm Im} \left\{ H(f) \right \}  \quad
 
\bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad
 
\bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad
Line 28: Line 28:
  
 
Da die Hilbert–Transformation nicht nur für Übertragungsfunktionen, sondern auch für Zeitsignale wichtige Aussagen liefert, wird die Korrespondenz häufig durch die allgemeine Variable  $x$  ausgedrückt, die je nach Anwendungsfall als normierte Frequenz oder als normierte Zeit zu interpretieren ist.
 
Da die Hilbert–Transformation nicht nur für Übertragungsfunktionen, sondern auch für Zeitsignale wichtige Aussagen liefert, wird die Korrespondenz häufig durch die allgemeine Variable  $x$  ausgedrückt, die je nach Anwendungsfall als normierte Frequenz oder als normierte Zeit zu interpretieren ist.
 +
 +
 +
  
  
Line 54: Line 57:
  
  
{Berechnen Sie die Übertragungsfunktion  $H_2(f)$. Welcher komplexe Wert ergibt sich für  $f = f_{\rm G}$?
+
{Berechnen Sie die Übertragungsfunktion  $H_2(f)$.  Welcher komplexe Wert ergibt sich für  $f = f_{\rm G}$?
 
|type="{}"}
 
|type="{}"}
 
${\rm Re}\big[H_2(f = f_{\rm G})\big] \ = \ $  { 0. }
 
${\rm Re}\big[H_2(f = f_{\rm G})\big] \ = \ $  { 0. }
Line 63: Line 66:
 
|type="[]"}
 
|type="[]"}
 
+ $H_2(f)$  beschreibt ein kausales System.
 
+ $H_2(f)$  beschreibt ein kausales System.
+ $(x^4 - x^2)/(x^4 +2 x^2 + 1)$  und  $2x^3/(x^4 +2 x^2 + 1)$  sind ein Hilbert–Paar.
+
+ Die Ausdrücke  $(x^4 - x^2)/(x^4 +2 x^2 + 1)$  und  $2x^3/(x^4 +2 x^2 + 1)$  sind ein Hilbert–Paar.
 
- Für  $n > 2$  ist die Kausalitätsbedingung nicht erfüllt.
 
- Für  $n > 2$  ist die Kausalitätsbedingung nicht erfüllt.
  

Revision as of 10:03, 30 October 2019

Zwei Vierpolschaltungen

Die Grafik zeigt oben den Vierpol mit der Übertragungsfunktion

$$H_1(f) = \frac{{\rm j}\cdot f/f_{\rm G}}{1+{\rm j}\cdot f/f_{\rm G}} \hspace{0.05cm},$$

wobei  $f_{\rm G}$  die 3dB–Grenzfrequenz angibt:

$$f_{\rm G} = \frac{R}{2 \pi \cdot L} \hspace{0.05cm}.$$

Durch Hintereinanderschalten von  $n$  gleich aufgebauten Vierpolen  $H_1(f)$  kommt man zur Übertragungsfunktion

$$H_n(f) = \big [H_1(f)\big ]^n =\frac{\big [{\rm j}\cdot f/f_{\rm G}\big ]^n}{\big [1+{\rm j}\cdot f/f_{\rm G}\big ]^n} \hspace{0.05cm}.$$
  • Vorausgesetzt ist hierbei eine geeignete Widerstandsentkopplung, die aber zur Lösung dieser Aufgabe nicht von Bedeutung ist.
  • Die untere Grafik zeigt zum Beispiel die Realisierung der Übertragungsfunktion  $H_2(f)$.


In dieser Aufgabe wird ein solcher Vierpol im Hinblick auf seine Kausalitätseigenschaften betrachtet.

Bei einem jeden kausalen System erfüllen der Real– und der Imaginärteil der Spektralfunktion  $H(f)$  die  Hilbert–Transformation, was durch das folgende Kurzzeichen ausgedrückt wird:

$${\rm Im} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad {\rm Re} \left\{ H(f) \right \}\hspace{0.05cm}.$$

Da die Hilbert–Transformation nicht nur für Übertragungsfunktionen, sondern auch für Zeitsignale wichtige Aussagen liefert, wird die Korrespondenz häufig durch die allgemeine Variable  $x$  ausgedrückt, die je nach Anwendungsfall als normierte Frequenz oder als normierte Zeit zu interpretieren ist.





Hinweise:


Fragebogen

1

Wie kann  $H_1(f)$  charakterisiert werden?

$H_1(f)$  beschreibt einen Tiefpass.
$H_1(f)$  beschreibt einen Hochpass.

2

Beschreibt  $H_1(f)$  ein kausales Netzwerk?

Ja.
Nein.

3

Berechnen Sie die Übertragungsfunktion  $H_2(f)$.  Welcher komplexe Wert ergibt sich für  $f = f_{\rm G}$?

${\rm Re}\big[H_2(f = f_{\rm G})\big] \ = \ $

${\rm Im}\big[H_2(f = f_{\rm G})\big] \ = \ $

4

Welche der folgenden Aussagen treffen zu?

$H_2(f)$  beschreibt ein kausales System.
Die Ausdrücke  $(x^4 - x^2)/(x^4 +2 x^2 + 1)$  und  $2x^3/(x^4 +2 x^2 + 1)$  sind ein Hilbert–Paar.
Für  $n > 2$  ist die Kausalitätsbedingung nicht erfüllt.


Musterlösung

(1)  Richtig ist der Lösungsvorschlag 2:

  • Mit der angegebenen Übertragungsfunktion kann man nach dem Spannungsteilerprinzip berechnen:
$$H_1(f = 0) = 0, \hspace{0.2cm}H_1(f \rightarrow \infty) = 1$$
  • Es handelt sich um einen Hochpass.
  • Für sehr niedrige Frequenzen stellt die Induktivität $L$ einen Kurzschluss dar.


(2)  Richtig ist Ja:

  • Jedes reale Netzwerk ist kausal. Die Impulsantwort $h(t)$ ist gleich dem Ausgangssignal $y(t)$, wenn zum Zeitpunkt $t= 0$ am Eingang ein extrem kurzfristiger Impuls – ein so genannter Diracimpuls – angelegt wird.
  • Aus Kausalitätsgründen kann dann natürlich am Ausgang nicht schon für Zeiten $t< 0$ ein Signal auftreten:
$$y(t) = h(t) = 0 \hspace{0.2cm}{\rm{f\ddot{u}r}} \hspace{0.2cm} t<0 \hspace{0.05cm}.$$
  • Formal lässt sich dies folgendermaßen zeigen:   Die Hochpass–Übertragungsfunktion $H_1(f)$ kann wie folgt umgeformt werden:
$$H_1(f) = \frac{{\rm j}\cdot f/f_{\rm G}}{1+{\rm j}\cdot f/f_{\rm G}} = 1- \frac{1}{1+{\rm j}\cdot f/f_{\rm G}} \hspace{0.05cm}.$$
  • Die zweite Übertragungsfunktion beschreibt die zu $H_1(f)$ äquivalente Tiefpassfunktion, die im Zeitbereich zur Exponentialfunktion führt. Die „$1$” wird zu einer Diracfunktion. Mit $T = 2\pi \cdot f_{\rm G}$ gilt somit für $t \ge 0$:
$$h_1(t) = \delta(t) - {1}/{T} \cdot {\rm e}^{-t/T} \hspace{0.05cm}.$$
  • Für $t< 0$ gilt dagegen $h_1(t)= 0$, womit die Kausalität nachgewiesen wäre.


(3)  Die Hintereinanderschaltung zweier Hochpässe führt zu folgender Übertragungsfunktion:

$$H_2(f) = \big [H_1(f)\big ]^2 =\frac{\big [{\rm j}\cdot f/f_{\rm G}\big ]^2}{\big [1+{\rm j}\cdot f/f_{\rm G}\big ]^2} =\frac{\big [{\rm j}\cdot f/f_{\rm G}\big ]^2 \cdot \big [(1-{\rm j}\cdot f/f_{\rm G})\big ]^2} {\big [(1+{\rm j}\cdot f/f_{\rm G}) \cdot (1-{\rm j}\cdot f/f_{\rm G})\big ]^2}= \frac{(f/f_{\rm G})^4 - (f/f_{\rm G})^2 +{\rm j}\cdot 2 \cdot (f/f_{\rm G})^3)} {\big [1+(f/f_{\rm G})^2 \big ]^2}\hspace{0.05cm}.$$
  • Mit $f = f_{\rm G}$ folgt daraus:
$$H_2(f = f_{\rm G}) = \frac{1 - 1 +{\rm j}\cdot 2} {4}= {\rm j} /{2} \hspace{0.5cm}\Rightarrow \hspace{0.5cm}{\rm Re} \left\{ H_2(f = f_{\rm G}) \right \} \hspace{0.15cm}\underline{ = 0}, \hspace{0.4cm} {\rm Im} \left\{ H_2(f = f_{\rm G}) \right \} \hspace{0.15cm}\underline{ = 0.5}\hspace{0.05cm}.$$


(4)  Richtig sind die beiden ersten Lösungsvorschläge:

  • Da für  $t < 0$  die Impulsantwort  $h_1(t) = 0$  ist, erfüllt auch die Faltungsoperation  $h_2(t) = h_1(t) \star h_1(t)$  die Kausalitätsbedingung. Ebenso ergibt die $n$–fache Faltung eine kausale Impulsantwort:   $h_n(t) = 0 \hspace{0.2cm}{\rm{f\ddot{u}r}} \hspace{0.2cm} t<0 \hspace{0.05cm}.$
  • Bei kausaler Impulsantwort  $h_2(t)$  hängen aber der Real– und der Imaginärteil der Spektralfunktion  $H_2(f)$  über die Hilbert–Transformation zusammen. Mit der Abkürzung  $x = f/f_{\rm G}$  und dem Ergebnis der Teilaufgabe (3) gilt somit:
$$\frac{x^4- x^2}{x^4+2 x^2+1} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{2x^3}{x^4+2 x^2+1}\hspace{0.05cm}.$$