Difference between revisions of "Aufgaben:Exercise 1.08: Identical Codes"

From LNTwww
Line 82: Line 82:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''  Der vorgegebene Code $\mathcal{C}$ wird durch folgende Kenngrößen charakterisiert:
 
'''(1)'''  Der vorgegebene Code $\mathcal{C}$ wird durch folgende Kenngrößen charakterisiert:
*Bitanzahl der Codeworte: $\underline{n = 6}$,
+
*Bitanzahl der Codeworte:  $\underline{n = 6}$,
*Bitanzahl der Informationsworte: $\underline{k = 3}$,
+
*Bitanzahl der Informationsworte:  $\underline{k = 3}$,
*Anzahl der Prüfbitgleichungen: $\underline{m = n k = 3}$,
+
*Anzahl der Prüfbitgleichungen:  $\underline{m = n - k = 3}$,
*Coderate: $R = k/n = 3/6  \Rightarrow  \underline{R = 0.5}$,
+
*Coderate:  $R = k/n = 3/6  \Rightarrow  \underline{R = 0.5}$,
*Anzahl der Codeworte (Codeumfang): $|\mathcal{C}| = 2^k  \Rightarrow  \underline{|C| = 8}$,
+
*Anzahl der Codeworte (Codeumfang):  $|\mathcal{C}| = 2^k  \Rightarrow  \underline{|C| = 8}$,
*minimale Hamming–Distanz (siehe Tabelle): $\underline{d}_{\rm min} \underline{= 3}$.
+
*minimale Hamming–Distanz (siehe Tabelle):  $\underline{d}_{\rm min} \underline{= 3}$.
 +
 
  
  
 
'''(2)'''  Richtig ist $\underline{\rm JA}$:
 
'''(2)'''  Richtig ist $\underline{\rm JA}$:
*Nach der Singleton–Schranke gilt $d_{\rm min} ≤ n – k + 1$. Mit $n = 6$ und $k = 3$ erhält man hierfür $d_{\rm min} ≤ 4$. Es kann also durchaus ein (6, 3)–Blockcode mit größerer Minimaldistanz konstruiert werden. Wie ein solcher Code aussieht, wurde freundlicherweise nicht gefragt.
+
*Nach der Singleton–Schranke gilt $d_{\rm min} ≤ n – k + 1$. Mit $n = 6$ und $k = 3$ erhält man hierfür $d_{\rm min} ≤ 4$.  
 +
*Es kann also durchaus ein (6, 3)–Blockcode mit größerer Minimaldistanz konstruiert werden. Wie ein solcher Code aussieht, wurde freundlicherweise nicht gefragt.
  
  
Line 99: Line 101:
  
 
*alle [[Kanalcodierung/Beispiele_binärer_Blockcodes#Single_Parity.E2.80.93check_Codes|Single Parity–check Codes]] (SPC): $k = n – 1, d_{\rm min} = 2$.
 
*alle [[Kanalcodierung/Beispiele_binärer_Blockcodes#Single_Parity.E2.80.93check_Codes|Single Parity–check Codes]] (SPC): $k = n – 1, d_{\rm min} = 2$.
 +
  
  
Line 113: Line 116:
  
 
*Dieser systematische Code beinhaltet genau die gleichen Codeworte wie die Codes $\mathcal{C}$ und $\mathcal{C}'$.
 
*Dieser systematische Code beinhaltet genau die gleichen Codeworte wie die Codes $\mathcal{C}$ und $\mathcal{C}'$.
 +
  
  
Line 122: Line 126:
 
:*der Code $\mathcal{C}_{\rm sys}$ die gleichen Codeworte beinhaltet wie der vorgegebene Code ''\mathcal{C}''.
 
:*der Code $\mathcal{C}_{\rm sys}$ die gleichen Codeworte beinhaltet wie der vorgegebene Code ''\mathcal{C}''.
  
*Für $\underline{u} = (0, 1, 0)$ lautet somit das Codewort $(0, 1, 0, ?, ?, ?)$. Ein Vergleich mit der Codetabelle von $\mathcal{C}$ auf der Angabenseite führt zum Ergebnis $\underline{x}_{\rm sys} = (0, 1, 0, 1, 0, 1)$.
+
*Für $\underline{u} = (0, 1, 0)$ lautet somit das Codewort $(0, 1, 0, ?, ?, ?)$. Ein Vergleich mit der Codetabelle von $\mathcal{C}$ auf der Angabenseite führt zu $\underline{x}_{\rm sys} = (0, 1, 0, 1, 0, 1)$.
 +
 
  
  
Line 134: Line 139:
  
 
:$${ \boldsymbol{\rm G}}_{\rm sys} = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &0 &1 &0 &1\\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} { \boldsymbol{\rm H}}_{\rm sys} = \begin{pmatrix} 1 &1 &0 &1 &0 &0\\ 1 &0 &1 &0 &1 &0\\ 0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
 
:$${ \boldsymbol{\rm G}}_{\rm sys} = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &0 &1 &0 &1\\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} { \boldsymbol{\rm H}}_{\rm sys} = \begin{pmatrix} 1 &1 &0 &1 &0 &0\\ 1 &0 &1 &0 &1 &0\\ 0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
 
  
 
Daraus ergeben sich Prüfgleichungen (siehe Grafik):
 
Daraus ergeben sich Prüfgleichungen (siehe Grafik):

Revision as of 15:38, 8 May 2019

Zuordnung des  $(6, 3)$–Blockcodes

Wir betrachten einen Blockcode  $\mathcal{C}$, der durch folgende Generatormatrix beschrieben wird:

$${ \boldsymbol{\rm G}} = \begin{pmatrix} 0 &0 &1 &0 &1 &1\\ 1 &0 &0 &1 &1 &0\\ 0 &1 &1 &1 &1 &0 \end{pmatrix} \hspace{0.05cm}.$$

Die Zuordnung zwischen den Informationsworten  $\underline{u}$  und den Codeworten  $\underline{x}$  kann der Tabelle entnommen werden. Man erkennt, dass es sich dabei nicht um einen systematischen Code handelt.

Durch Manipulation der Generatormatrix  $\boldsymbol {\rm G}$  lassen sich daraus identische Codes konstruieren. Darunter versteht man Codes mit gleichen Codeworten, jedoch unterschiedlicher Zuordnung  $\underline{u} \rightarrow \underline{x}$.

Folgende Operationen sind erlaubt, um einen identischen Code zu erhalten:

  • Vertauschen oder Permutieren der Zeilen,
  • Multiplizieren aller Zeilen mit einem konstanten Vektor ungleich  $0$,
  • Ersetzen einer Zeile durch eine Linearkombination zwischen dieser Zeile und einer anderen.


Für den in der Teilaufgabe (3) gesuchten Code  $\mathcal{C}_{\rm sys}$  mit Generatormatrix  $\boldsymbol{\rm G}_{\rm sys}$  wird weiter gefordert, dass er systematisch ist.





Hinweise :

  • Die Aufgabe gehört zum Kapitel  Allgemeine Beschreibung linearer Blockcodes.
  • Bezug genommen wird insbesondere auf die Seite  Systematische Codes.
  • Bezug genommen wird zudem auf die so genannte  Singleton–Schranke. Diese besagt, dass die minimale Hamming–Distanz eines  $(n, k)$–Blockcodes nach oben beschränkt ist:   $d_{\rm min} \le n - k +1.$



Fragebogen

1

Geben Sie die Kenngrößen des gegebenen Codes  $\mathcal{C}$  an.

$n \hspace{0.3cm} = \ $

$k \hspace{0.3cm} = \ $

$m \hspace{0.15cm} = \ $

$R \hspace{0.2cm} = \ $

$|\hspace{0.05cm}\mathcal{C}\hspace{0.05cm}| \hspace{-0.05cm} = \ $

$d_{\rm min} \hspace{0.01cm} = \ $

2

Gibt es einen  $(6, 3)$–Blockcode mit größerer Minimaldistanz?

Ja.
Nein.

3

Wie lautet die Generatormatrix  ${\boldsymbol{\rm G}}_{\rm sys}$  des identischen systematischen Codes?

Die 1. Zeile lautet   „$1 \ 0 \ 1 \ 1 \ 0 \ 1$”.
Die 2. Zeile lautet   „$0 \ 1 \ 0 \ 1 \ 0 \ 1$”.
Die 3. Zeile lautet   „$0 \ 0 \ 1 \ 0 \ 1 \ 1$”.

4

Welche Zuordnungen ergeben sich bei dieser Codierung?

$\underline{u} = (0, 0, 0) \ \Rightarrow \ \underline{x}_{\rm sys} = (0, 0, 0, 0, 0, 0)$.
$\underline{u} = (0, 0, 1) \ \Rightarrow \ \underline{x}_{\rm sys}= (0, 0, 1, 0, 0, 1)$.
$\underline{u} = (0, 1, 0) \ \Rightarrow \ \underline{x}_{\rm sys} = (0, 1, 0, 1, 1, 0)$.

5

Welche Prüfbits hat der systematische Code  $\underline{x}_{\rm sys} = (u_{1}, u_{2}, u_{3}, p_{1}, p_{2}, p_{3})$?

$p_{1} = u_{1} \oplus u_{2},$
$p_{2} = u_{2} \oplus u_{3},$
$p_{3} = u_{1} \oplus u_{3}.$


Musterlösung

(1)  Der vorgegebene Code $\mathcal{C}$ wird durch folgende Kenngrößen charakterisiert:

  • Bitanzahl der Codeworte:  $\underline{n = 6}$,
  • Bitanzahl der Informationsworte:  $\underline{k = 3}$,
  • Anzahl der Prüfbitgleichungen:  $\underline{m = n - k = 3}$,
  • Coderate:  $R = k/n = 3/6 \Rightarrow \underline{R = 0.5}$,
  • Anzahl der Codeworte (Codeumfang):  $|\mathcal{C}| = 2^k \Rightarrow \underline{|C| = 8}$,
  • minimale Hamming–Distanz (siehe Tabelle):  $\underline{d}_{\rm min} \underline{= 3}$.


(2)  Richtig ist $\underline{\rm JA}$:

  • Nach der Singleton–Schranke gilt $d_{\rm min} ≤ n – k + 1$. Mit $n = 6$ und $k = 3$ erhält man hierfür $d_{\rm min} ≤ 4$.
  • Es kann also durchaus ein (6, 3)–Blockcode mit größerer Minimaldistanz konstruiert werden. Wie ein solcher Code aussieht, wurde freundlicherweise nicht gefragt.


Die Minimaldistanz aller Hamming–Codes ist $d_{\rm min} = 3$, und nur der Sonderfall mit $n = 3$ und $k = 1$ erreicht den Grenzwert. Dagegen erreichen das Maximum entsprechend der Singleton–Schranke:

  • alle Wiederholungscodes (Repetition Codes, RC) wegen $k = 1$und $d_{\rm min} = n$; hierzu gehört auch der (3, 1)–Hamming–Code, der ja bekannterweise identisch ist mit RC (3, 1),


(3)  Richtig sind die Lösungsvorschläge 2 und 3:

  • Vertauscht man Zeilen in der Generatormatrix $\boldsymbol {\rm G}$, so kommt man zu einem identischen Code $\mathcal{C}'$. Das heißt: Die Codes $\mathcal{C}$ und $\mathcal{C}'$ beinhalten die genau gleichen Codeworte.
  • Beispielsweise erhält man nach zyklischem Zeilentausch $2 \rightarrow 1, 3 \rightarrow 2$ und $1 \rightarrow 3$ die neue Matrix
$${ \boldsymbol{\rm G}}' = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &1 &1 &1 &0\\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$
  • Die erste und die letzte Zeile der neuen Matrix entsprechen schon den Vorgaben eines systematischen Codes, nämlich, dass deren Generatormatrix ${ \boldsymbol{\rm G}_{\rm sys}}$ mit einer Diagonalmatrix beginnen muss.
  • Ersetzt man die Zeile 2 durch die Modulo–2–Summe von Zeile 2 und 3, so erhält man:
$${ \boldsymbol{\rm G}}_{\rm sys} = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &0 &1 &0 &1\\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$
  • Dieser systematische Code beinhaltet genau die gleichen Codeworte wie die Codes $\mathcal{C}$ und $\mathcal{C}'$.


(4)  Richtig sind die Lösungsvorschläge 1 und 2:

  • Wendet man die Gleichung $\underline{x}_{\rm sys} = \underline{u} \cdot \boldsymbol{\rm G}_{\rm sys}$ auf die obigen Beispiele an, so erkennt man, dass die beiden ersten Aussagen richtig sind, nicht aber die letzte.
  • Ohne Rechnung kommt man zum gleichen Ergebnis, wenn man berücksichtigt, dass
  • das systematische Codewort $\underline{x}_{\rm sys}$ mit $\underline{u}$ beginnen muss,
  • der Code $\mathcal{C}_{\rm sys}$ die gleichen Codeworte beinhaltet wie der vorgegebene Code \mathcal{C}.
  • Für $\underline{u} = (0, 1, 0)$ lautet somit das Codewort $(0, 1, 0, ?, ?, ?)$. Ein Vergleich mit der Codetabelle von $\mathcal{C}$ auf der Angabenseite führt zu $\underline{x}_{\rm sys} = (0, 1, 0, 1, 0, 1)$.


(5)  Richtig ist nur die Aussage 1. Die Angaben für $p_{2}$ und $p_{3}$ sind dagegen genau vertauscht.

  • Bei systematischer Codierung besteht folgender Zusammenhang zwischen Generator– und Prüfmatrix:
$${ \boldsymbol{\rm G}} =\left({ \boldsymbol{\rm I}}_k \: ; \:{ \boldsymbol{\rm P}} \right) \hspace{0.3cm}\Leftrightarrow \hspace{0.3cm} { \boldsymbol{\rm H}} =\left({ \boldsymbol{\rm P}}^{\rm T}\: ; \:{ \boldsymbol{\rm I}}_m \right) \hspace{0.05cm}.$$
Schaubild der Prüfgleichungen
  • Angewendet auf das aktuelle Beispiel erhält man so:
$${ \boldsymbol{\rm G}}_{\rm sys} = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &0 &1 &0 &1\\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} { \boldsymbol{\rm H}}_{\rm sys} = \begin{pmatrix} 1 &1 &0 &1 &0 &0\\ 1 &0 &1 &0 &1 &0\\ 0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$

Daraus ergeben sich Prüfgleichungen (siehe Grafik):

$$u_1 \oplus u_2 \oplus p_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} p_1 = u_1 \oplus u_2 \hspace{0.05cm},$$
$$ u_1 \oplus u_3 \oplus p_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} p_2 = u_1 \oplus u_3 \hspace{0.05cm},$$
$$ u_2 \oplus u_3 \oplus p_3 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} p_3 = u_2 \oplus u_3 \hspace{0.05cm}.$$