Difference between revisions of "Aufgaben:Exercise 2.14: Petersen Algorithm?"
Line 31: | Line 31: | ||
{Was ist beim Petersen–Algorithmus am aufwändigsten? | {Was ist beim Petersen–Algorithmus am aufwändigsten? | ||
− | |type=" | + | |type="()"} |
- Überprüfung, ob überhaupt (ein oder mehrere) Fehler vorliegen, | - Überprüfung, ob überhaupt (ein oder mehrere) Fehler vorliegen, | ||
+ die Lokalisierung der Fehler, | + die Lokalisierung der Fehler, | ||
Line 48: | Line 48: | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
'''(1)''' Richtig ist die <u>Antwort 1</u>: | '''(1)''' Richtig ist die <u>Antwort 1</u>: | ||
− | *Prinzipiell wäre ein Syndromdecoder auch bei | + | *Prinzipiell wäre ein Syndromdecoder auch bei RS–Codes möglich, aber bei den hier üblichen großen Codewortlängen $n$ ergäben sich extrem lange Decodierzeiten. |
*Bei Faltungscodes (diese arbeiten seriell) macht Syndromdecodierung gar keinen Sinn. | *Bei Faltungscodes (diese arbeiten seriell) macht Syndromdecodierung gar keinen Sinn. | ||
+ | |||
'''(2)''' Wie aus den Ausführungen im Theorieteil hervorgeht, ist die Fehlerlokalisierung mit dem weitaus größten Aufwand verbunden ⇒ <u>Antwort 2</u>. | '''(2)''' Wie aus den Ausführungen im Theorieteil hervorgeht, ist die Fehlerlokalisierung mit dem weitaus größten Aufwand verbunden ⇒ <u>Antwort 2</u>. | ||
+ | |||
Line 58: | Line 60: | ||
*Diese Verfahren sind auf der Seite [[Kanalcodierung/Fehlerkorrektur_nach_Reed%E2%80%93Solomon%E2%80%93Codierung#Schnelle_Reed.E2.80.93Solomon.E2.80.93Decodierung| Schnelle Reed–Solomon–Decodierung]] zusammengefasst. | *Diese Verfahren sind auf der Seite [[Kanalcodierung/Fehlerkorrektur_nach_Reed%E2%80%93Solomon%E2%80%93Codierung#Schnelle_Reed.E2.80.93Solomon.E2.80.93Decodierung| Schnelle Reed–Solomon–Decodierung]] zusammengefasst. | ||
*Der BCJR– und der Viterbi–Algorithmus beziehen sich dagegen auf die [[Kanalcodierung/Decodierung_von_Faltungscodes|Decodierung von Faltungscodes]]. | *Der BCJR– und der Viterbi–Algorithmus beziehen sich dagegen auf die [[Kanalcodierung/Decodierung_von_Faltungscodes|Decodierung von Faltungscodes]]. | ||
− | *Die Grafik auf der Angabenseite zeigt den Berlekamp–Massey–Algorithus (BMA). Die Erklärung zu dieser Abbildung finden Sie im Fachbuch [Bos98]: „Bossert, M.: Kanalcodierung. Stuttgart: B. G. Teubner, 1998” ab Seite 73. | + | *Die Grafik auf der Angabenseite zeigt den Berlekamp–Massey–Algorithus (BMA). |
+ | *Die Erklärung zu dieser Abbildung finden Sie im Fachbuch [Bos98]: „Bossert, M.: Kanalcodierung. Stuttgart: B. G. Teubner, 1998” ab Seite 73. | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
Revision as of 13:19, 29 May 2019
Im Kapitel Fehlerkorrektur nach Reed–Solomon–Codierung wurde die Decodierung von Reed–Solomon–Codes mit dem Petersen–Algorithmus behandelt.
- Dessen Vorteil ist, dass die einzelnen Schritte nachvollziehbar sind.
- Sehr von Nachteil ist aber der immens hohe Decodieraufwand.
Schon seit der Erfindung der Reed–Solomon–Codierung im Jahre 1960 beschäftigten sich viele Wissenschaftler und Ingenieure mit der Entwicklung möglichst schneller Algorithmen zur Reed–Solomon–Decodierung, und auch heute ist die Algebraische Decodierung noch ein hochaktuelles Forschungsgebiet.
In dieser Aufgabe sollen einige diesbezügliche Begriffe erklärt werden. Auf eine genaue Erklärung dieser Verfahren wurde in $\rm LNTwww $ verzichtet.
Hinweise:
- Die Aufgabe gehört zum Kapitel Fehlerkorrektur nach Reed–Solomon–Codierung.
- Die Grafik zeigt das Flussdiagramm eines der bekanntesten Verfahren zur Decodierung von Reed–Solomon–Codes. Um welchen Algorithmus es sich dabei handelt, wird in der Musterlösung zu dieser Aufgabe genannt.
- Die Grafik wurde dem Fachbuch [Bos98]: „Bossert, M.: Kanalcodierung. Stuttgart: B. G. Teubner, 1998” entnommen. Wir danken dem Autor Martin Bossert für die Erlaubnis, die Grafik verwenden zu dürfen.
Fragebogen
Musterlösung
- Prinzipiell wäre ein Syndromdecoder auch bei RS–Codes möglich, aber bei den hier üblichen großen Codewortlängen $n$ ergäben sich extrem lange Decodierzeiten.
- Bei Faltungscodes (diese arbeiten seriell) macht Syndromdecodierung gar keinen Sinn.
(2) Wie aus den Ausführungen im Theorieteil hervorgeht, ist die Fehlerlokalisierung mit dem weitaus größten Aufwand verbunden ⇒ Antwort 2.
(3) Richtig sind die Antworten 1, 3 und 4:
- Diese Verfahren sind auf der Seite Schnelle Reed–Solomon–Decodierung zusammengefasst.
- Der BCJR– und der Viterbi–Algorithmus beziehen sich dagegen auf die Decodierung von Faltungscodes.
- Die Grafik auf der Angabenseite zeigt den Berlekamp–Massey–Algorithus (BMA).
- Die Erklärung zu dieser Abbildung finden Sie im Fachbuch [Bos98]: „Bossert, M.: Kanalcodierung. Stuttgart: B. G. Teubner, 1998” ab Seite 73.