Difference between revisions of "Aufgaben:Exercise 3.4Z: Trapezoid, Rectangle and Triangle"
Line 67: | Line 67: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Die äquivalente Impulsdauer ist $\Delta t = t_1 + t_2 \;\underline{= 10 \,\text{ms}}$ und der Rolloff-Faktor $r_t = 2/10 \;\underline{= 0.2}$. | + | '''(1)''' Die äquivalente Impulsdauer ist $\Delta t = t_1 + t_2 \;\underline{= 10 \,\text{ms}}$ und der Rolloff-Faktor $r_t = 2/10 \;\underline{= 0.2}$. |
+ | |||
'''(2)''' Richtig sind die <u>Lösungsvorschläge 2 und 3</u>: | '''(2)''' Richtig sind die <u>Lösungsvorschläge 2 und 3</u>: | ||
− | *Der Spektralwert bei $f = 0$ beträgt $A \cdot \Delta t = 10 \,\text{mV/Hz}$. | + | *Der Spektralwert bei $f = 0$ beträgt $A \cdot \Delta t = 10 \,\text{mV/Hz}$. |
− | *Da ${X(f)}$ reell ist und sowohl positive als auch negative Werte annehmen kann, sind nur die zwei Phasenwerte $0$ und $\pi$ möglich. | + | *Da ${X(f)}$ reell ist und sowohl positive als auch negative Werte annehmen kann, sind nur die zwei Phasenwerte $0$ und $\pi$ möglich. |
− | *Nullstellen gibt es aufgrund der ersten si-Funktion bei allen Vielfachen von $1/\Delta t = 100\, \text{Hz}$. | + | *Nullstellen gibt es aufgrund der ersten si-Funktion bei allen Vielfachen von $1/\Delta t = 100\, \text{Hz}$. |
− | *Die zweite si-Funktion führt zu Nulldurchgängen im Abstand $1/(r_t \cdot \Delta t) = 500 \,\text{Hz}$. Diese fallen exakt mit den Nullstellen der ersten si-Funktion zusammen. | + | *Die zweite si-Funktion führt zu Nulldurchgängen im Abstand $1/(r_t \cdot \Delta t) = 500 \,\text{Hz}$. Diese fallen exakt mit den Nullstellen der ersten si-Funktion zusammen. |
+ | |||
'''(3)''' <u>Alle Lösungsvorschläge</u> sind zutreffend: | '''(3)''' <u>Alle Lösungsvorschläge</u> sind zutreffend: | ||
− | *Mit der äquivalenten Impulsdauer $\Delta t = 10 \,\text{ms}$ und dem Rolloff-Faktor $r_t = 0$ erhält man: $R( f ) = A \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ( {{\rm{\pi }} \cdot \Delta t \cdot f} ).$ | + | *Mit der äquivalenten Impulsdauer $\Delta t = 10 \,\text{ms}$ und dem Rolloff-Faktor $r_t = 0$ erhält man: $R( f ) = A \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ( {{\rm{\pi }} \cdot \Delta t \cdot f} ).$ |
− | *Daraus folgt $R( f = 0) = A \cdot \Delta t = X( f = 0).$ | + | *Daraus folgt $R( f = 0) = A \cdot \Delta t = X( f = 0).$ |
+ | |||
'''(4)''' Hier sind die <u>Lösungsvorschläge 1 und 3</u> zutreffend: | '''(4)''' Hier sind die <u>Lösungsvorschläge 1 und 3</u> zutreffend: | ||
− | *Beim Dreieckimpuls ist der Rolloff-Faktor $r_t = 1$. | + | *Beim Dreieckimpuls ist der Rolloff-Faktor $r_t = 1$. |
− | *Die äquivalente Impulsdauer ist $\Delta t = 10 \,\text{ms}$. Daraus folgt $D( f ) = A \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ^2 ( {{\rm{\pi }} \cdot \Delta t \cdot f} )$ und $D( f = 0) = A \cdot \Delta t = X( f = 0)$. | + | *Die äquivalente Impulsdauer ist $\Delta t = 10 \,\text{ms}$. Daraus folgt $D( f ) = A \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ^2 ( {{\rm{\pi }} \cdot \Delta t \cdot f} )$ und $D( f = 0) = A \cdot \Delta t = X( f = 0)$. |
− | *Da ${D(f)}$ nicht negativ werden kann, ist die Phase $[{\rm arc} \; {D(f)}]$ stets | + | *Da ${D(f)}$ nicht negativ werden kann, ist die Phase $[{\rm arc} \; {D(f)}]$ stets Null. Der Phasenwert $\pi$ $(180°)$ ist also bei der Dreieckform nicht möglich. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Revision as of 15:50, 26 September 2019
Betrachtet werden drei unterschiedliche Impulsformen. Der Impuls ${x(t)}$ ist trapezförmig. Für $| t | < t_1 = 4 \,\text{ms}$ ist der Zeitverlauf konstant gleich ${A} = 1\, \text{V}$. Danach fällt ${x(t)}$ bis zum Zeitpunkt $t_2 = 6\, \text{ms}$ linear bis auf den Wert Null ab.
Mit den beiden abgeleiteten Systemgrößen, nämlich
- $$\Delta t = t_1 + t_2$$
- und dem so genannten Rolloff-Faktor (im Zeitbereich)
- $$r_t = \frac{t_2 - t_1 }{t_2 + t_1 }$$
lautet die Spektralfunktion des Trapezimpulses:
- $$X( f ) = A \cdot \Delta t \cdot {\mathop{\rm si}\nolimits}( {{\rm \pi} \cdot \Delta t \cdot f} ) \cdot \hspace{0.1cm}{\mathop{\rm si}\nolimits}( {{\rm \pi}\cdot \Delta t \cdot r_t \cdot f} ).$$
Weiter sind in der Grafik noch der Rechteckimpuls ${r(t)}$ und der Dreieckimpuls ${d(t)}$ dargestellt, die beide als Grenzfälle des Trapezimpulses ${x(t)}$ interpretiert werden können.
Hinweise:
- Die Aufgabe gehört zum Kapitel Gesetzmäßigkeiten der Fouriertransformation.
- Sie können Ihre Ergebnisse anhand der beiden interaktiven Applets Impulse und Spektren sowie Frequenzgang und Impulsantwort überprüfen.
Fragebogen
Musterlösung
(2) Richtig sind die Lösungsvorschläge 2 und 3:
- Der Spektralwert bei $f = 0$ beträgt $A \cdot \Delta t = 10 \,\text{mV/Hz}$.
- Da ${X(f)}$ reell ist und sowohl positive als auch negative Werte annehmen kann, sind nur die zwei Phasenwerte $0$ und $\pi$ möglich.
- Nullstellen gibt es aufgrund der ersten si-Funktion bei allen Vielfachen von $1/\Delta t = 100\, \text{Hz}$.
- Die zweite si-Funktion führt zu Nulldurchgängen im Abstand $1/(r_t \cdot \Delta t) = 500 \,\text{Hz}$. Diese fallen exakt mit den Nullstellen der ersten si-Funktion zusammen.
(3) Alle Lösungsvorschläge sind zutreffend:
- Mit der äquivalenten Impulsdauer $\Delta t = 10 \,\text{ms}$ und dem Rolloff-Faktor $r_t = 0$ erhält man: $R( f ) = A \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ( {{\rm{\pi }} \cdot \Delta t \cdot f} ).$
- Daraus folgt $R( f = 0) = A \cdot \Delta t = X( f = 0).$
(4) Hier sind die Lösungsvorschläge 1 und 3 zutreffend:
- Beim Dreieckimpuls ist der Rolloff-Faktor $r_t = 1$.
- Die äquivalente Impulsdauer ist $\Delta t = 10 \,\text{ms}$. Daraus folgt $D( f ) = A \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ^2 ( {{\rm{\pi }} \cdot \Delta t \cdot f} )$ und $D( f = 0) = A \cdot \Delta t = X( f = 0)$.
- Da ${D(f)}$ nicht negativ werden kann, ist die Phase $[{\rm arc} \; {D(f)}]$ stets Null. Der Phasenwert $\pi$ $(180°)$ ist also bei der Dreieckform nicht möglich.