Difference between revisions of "Aufgaben:Exercise 3.5: Differentiation of a Triangular Pulse"

From LNTwww
Line 65: Line 65:
 
:$$\frac{{{\rm d}x( t )}}{{{\rm d}t}}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{\rm{j}} 2{\rm{\pi }}f \cdot X( f ).$$
 
:$$\frac{{{\rm d}x( t )}}{{{\rm d}t}}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{\rm{j}} 2{\rm{\pi }}f \cdot X( f ).$$
  
Angewandt auf das vorliegende Beispiel erhält man:
+
*Angewandt auf das vorliegende Beispiel erhält man:
 
   
 
   
:$$Y( f ) = T \cdot {\rm{j}}2{\rm{\pi }}f \cdot A \cdot T \cdot \frac{{\sin ^2 ( {{\rm{\pi }}fT} )}}{{( {{\rm{\pi }}fT} )^2 }} = {\rm{j}} \cdot 2 \cdot A\cdot T \cdot \frac{{\sin ^2 ( {{\rm{\pi }}fT} )}}{{{\rm{\pi }}fT}}.$$
+
:$$Y( f ) = T \cdot {\rm{j}}\cdot 2{\rm{\pi }}f \cdot A \cdot T \cdot \frac{{\sin ^2 ( {{\rm{\pi }}fT} )}}{{( {{\rm{\pi }}fT} )^2 }} = {\rm{j}} \cdot 2 \cdot A\cdot T \cdot \frac{{\sin ^2 ( {{\rm{\pi }}fT} )}}{{{\rm{\pi }}fT}}.$$
  
*Diese Funktion ist rein imaginär. Bei der Frequenz $f = 0$ verschwindet auch der Imaginärteil. Dies kann man z. B. durch Anwendung der Regel von l'Hospital formal nachweisen   ⇒   $Y( f = 0 ) \;\underline{= 0}$.
+
*Diese Funktion ist rein imaginär. Bei der Frequenz  $f = 0$  verschwindet auch der Imaginärteil. Dies kann man zum Beispiel durch Anwendung der Regel von l'Hospital formal nachweisen   ⇒   $Y( f = 0 ) \;\underline{= 0}$.
*Das Ergebnis folgt aber auch aus der Tatsache, dass der Spektralwert bei $f = 0$ gleich dem Integral über die Zeitfunktion $y(t)$ ist.
+
*Das Ergebnis folgt aber auch aus der Tatsache, dass der Spektralwert bei  $f = 0$  gleich dem Integral über die Zeitfunktion  $y(t)$  ist.
*Bei der normierten Frequenz $f \cdot T = 0.5$ (also für $f = 1\,\text{ kHz}$) ist die Sinusfunktion gleich $1$ und man erhält $|Y(f = 1 \,\text{kHz})| = 4/\pi  \cdot A \cdot T$, also näherungsweise $|Y(f=1 \ \text{kHz})| \ \underline{=0.636 \,\text{ mV/Hz}}$  (positiv imaginär).
+
*Bei der normierten Frequenz  $f \cdot T = 0.5$  $($also für  $f = 1\,\text{ kHz})$  ist die Sinusfunktion gleich  $1$  und man erhält  $|Y(f = 1 \,\text{kHz})| = 4/\pi  \cdot A \cdot T$, also näherungsweise  $|Y(f=1 \ \text{kHz})| \ \underline{=0.636 \,\text{ mV/Hz}}$  (positiv imaginär).
  
  
'''(2)'''&nbsp; Richtig sind  die <u>Lösungsvorschläge 1 und 3</u>.:
+
 
*Die Nullstellen von $X(f)$ bleiben erhalten und es gibt eine weitere Nullstelle bei der Frequenz $f = 0$. Als asymptotischen Verlauf bezeichnet man die obere Schranke
+
'''(2)'''&nbsp; Richtig sind  die <u>Lösungsvorschläge 1 und 3</u>:
 +
*Die Nullstellen von&nbsp; $X(f)$&nbsp; bleiben erhalten und es gibt eine weitere Nullstelle bei der Frequenz&nbsp; $f = 0$.  
 +
*Als asymptotischen Verlauf bezeichnet man die obere Schranke
  
 
:$$\left| {Y_{\max }( f )} \right| = \frac{2A}{{{\rm{\pi }} \cdot |f|}} \ge \left| {Y( f )} \right|.$$
 
:$$\left| {Y_{\max }( f )} \right| = \frac{2A}{{{\rm{\pi }} \cdot |f|}} \ge \left| {Y( f )} \right|.$$
 
   
 
   
*Für die Frequenzen, bei denen die Sinusfunktion die Werte $\pm 1$ liefert, sind $|Y_{\text{max}}(f)|$ und $|Y(f)|$ identisch.  
+
*Für die Frequenzen, bei denen die Sinusfunktion die Werte&nbsp; $\pm 1$&nbsp; liefert, sind&nbsp; $|Y_{\text{max}}(f)|$&nbsp; und&nbsp; $|Y(f)|$&nbsp; identisch.  
*Beim Rechteckimpuls der Amplitude $A$ lautet die entsprechende Schranke $A/(\pi \cdot |f|)$.
+
*Beim Rechteckimpuls der Amplitude&nbsp; $A$&nbsp; lautet die entsprechende Schranke&nbsp; $A/(\pi \cdot |f|)$.
*Dagegen fällt das Spektrum $X(f)$ des Dreieckimpulses asymptotisch schneller ab:
+
*Dagegen fällt das Spektrum&nbsp; $X(f)$&nbsp; des Dreieckimpulses asymptotisch schneller ab:
 
   
 
   
 
:$$\left| {X_{\max }( f )} \right| = \frac{A}{{{\rm{\pi }}^{\rm{2}} f^2 T}} \ge \left| {X( f )} \right|.$$
 
:$$\left| {X_{\max }( f )} \right| = \frac{A}{{{\rm{\pi }}^{\rm{2}} f^2 T}} \ge \left| {X( f )} \right|.$$
  
*Dies ist darauf zurückzuführen, dass $x(t)$ keine Unstetigkeitsstellen aufweist.  
+
*Dies ist darauf zurückzuführen, dass&nbsp; $x(t)$&nbsp; keine Unstetigkeitsstellen aufweist.  
  
  
'''(3)'''&nbsp; Ausgehend von einem symmetrischen Rechteckimpuls $r(t)$ mit Amplitude $A$ und Dauer $T$ kann das Signal $y(t)$ auch wie folgt dargestellt werden:  
+
 
 +
'''(3)'''&nbsp; Ausgehend von einem symmetrischen Rechteckimpuls&nbsp; $r(t)$&nbsp; mit Amplitude&nbsp; $A$&nbsp; und Dauer&nbsp; $T$&nbsp; kann das Signal&nbsp; $y(t)$&nbsp; auch wie folgt dargestellt werden:  
 
:$$y(t) = r( {t + T/2} ) - r( {t - T/2} ).$$  
 
:$$y(t) = r( {t + T/2} ) - r( {t - T/2} ).$$  
  
Durch zweimalige Anwendung des Verschiebungssatzes erhält man:
+
*Durch zweimalige Anwendung des Verschiebungssatzes erhält man:
 
   
 
   
 
:$$Y( f ) = R( f ) \cdot {\rm{e}}^{{\rm{j\pi }}fT}  - R( f ) \cdot {\rm{e}}^{ - {\rm{j\pi }}fT} .$$
 
:$$Y( f ) = R( f ) \cdot {\rm{e}}^{{\rm{j\pi }}fT}  - R( f ) \cdot {\rm{e}}^{ - {\rm{j\pi }}fT} .$$
  
Mit der Beziehung $\text{e}^{\text{j}x} – \text{e}^{–\text{j}x} = 2\text{j} \cdot \text{sin}(x)$ kann hierfür auch geschrieben werden:
+
*Mit der Beziehung&nbsp; $\text{e}^{\text{j}x} – \text{e}^{–\text{j}x} = 2\text{j} \cdot \text{sin}(x)$&nbsp; kann hierfür auch geschrieben werden:
 
   
 
   
 
:$$Y( f ) = 2{\rm{j}} \cdot A \cdot T \cdot {\mathop{\rm si}\nolimits}( {{\rm{\pi }}fT} ) \cdot \sin ( {{\rm{\pi }}fT} ).$$
 
:$$Y( f ) = 2{\rm{j}} \cdot A \cdot T \cdot {\mathop{\rm si}\nolimits}( {{\rm{\pi }}fT} ) \cdot \sin ( {{\rm{\pi }}fT} ).$$
  
Es ergibt sich folgerichtig das gleiche Ergebnis wie in der Teilaufgabe (1).
+
*Es ergibt sich folgerichtig das gleiche Ergebnis wie in der Teilaufgabe&nbsp; '''(1)'''.  
 
 
Welcher Weg schneller zum Ergebnis führt, muss jeder Einzelnen selbst für sich entscheiden.  
 
  
Der Autor meint, dass der erste Weg etwas günstiger ist. <u>Subjektiv entscheiden wir uns für den Lösungsvorschlag 1</u>.
+
*Welcher Weg schneller zum Ergebnis führt, muss jeder selbst für sich entscheiden. Der Autor meint, dass der erste Weg etwas günstiger ist.  
 +
*<u>Subjektiv entscheiden wir uns für den Lösungsvorschlag 1</u>.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
 
[[Category:Aufgaben zu Signaldarstellung|^3. Aperiodische Signale - Impulse^]]
 
[[Category:Aufgaben zu Signaldarstellung|^3. Aperiodische Signale - Impulse^]]

Revision as of 16:10, 26 September 2019

Dreiecksignal und
differenziertes Dreiecksignal

Gesucht wird das Spektrum  $Y(f)$  des Signals

$$y\left( t \right) = \left\{ \begin{array}{c} A \\ - A \\ 0 \\ \end{array} \right.\quad \begin{array}{*{20}c} {{\rm{f \ddot{u}r}}} \\ {{\rm{f\ddot{u} r}}} \\ {{\rm{f\ddot{u}r}}} \\ \end{array}\;\begin{array}{*{20}c} { - T \le t < 0,} \\ {0 < t \le T,} \\ {{\rm{sonst}}{\rm{.}}} \\\end{array}$$

Dabei gelte  $A = 1\,{\rm V}$  und  $T = 0.5\,{\rm ms}$.

Als bekannt vorausgesetzt wird die Fouriertransformierte des oben skizzierten Dreieckimpulses  $x(t)$, nämlich

$$X( f ) = A \cdot T \cdot {\mathop{\rm si}\nolimits} ^2 ( {{\rm{\pi }}fT} ),$$

wobei  $\text{si}(x) = \text{sin}(x)/x$  gilt.

Ein Vergleich der beiden Zeitsignale zeigt, dass zwischen den Funktionen  $x(t)$  und  $y(t)$  folgender Zusammenhang besteht:

$$y(t) = T \cdot \frac{{{\rm d}x(t)}}{{{\rm d}t}}.$$





Hinweise:

  • Die Aufgabe gehört zum Kapitel  Gesetzmäßigkeiten der Fouriertransformation.
  • Alle dort dargelegten Gesetzmäßigkeiten – unter Anderem auch der  Verschiebungssatz  und der  Integrationssatz  – werden im Lernvideo  Gesetzmäßigkeiten der Fouriertransformation  an Beispielen verdeutlicht.
  • In der Teilaufgabe  (3)  soll das Spektrum  $Y(f)$  ausgehend von einem symmetrischen Rechteckimpuls  $r(t)$  mit Amplitude  $A$  und Dauer  $T$  sowie dessen Spektrum  $R(f) = A \cdot T \cdot \text{si}(\pi fT)$  berechnet werden. Dies erreicht man durch zweimalige Anwendung des  Verschiebungssatzes.
  • In  Aufgabe 3.5Z  wird das Spektrum  $Y(f)$  ausgehend von einem aus drei Diracfunktionen bestehenden Signal durch Anwendung des Integrationssatzes berechnet.



Fragebogen

1

Berechnen Sie die Spektralfunktion  $Y(f)$  am Ausgang. Wie groß ist deren Betrag bei den Frequenzen  $f = 0$  bzw.  $f = 1 \ \rm kHz$?

$|Y(f=0)| \hspace{0.2cm} = \ $

 $\text{mV/Hz}$
$|Y(f=1 \ \text{kHz})| \ = \ $

 $\text{mV/Hz}$

2

Welche Aussagen sind hinsichtlich des Spektrums  $Y(f)$  zutreffend?

Die Nullstellen von  $X(f)$  bleiben auch in  $Y(f)$  erhalten.
Für  $f \rightarrow \infty$  hat  $Y(f)$  den gleichen Verlauf wie  $X(f)$.
Für  $f \rightarrow \infty$  ist  $Y(f)$  doppelt so groß als das Spektrum eines Rechteckimpulses der Dauer  $T$.

3

Berechnen Sie  $Y(f)$  ausgehend vom Rechteckimpuls durch Anwendung des Verschiebungssatzes. Welche Aussage ist hier zutreffend?

Der Differentiationssatz führt schneller zum Ergebnis.
Der Verschiebungssatz führt schneller zum Ergebnis.


Musterlösung

(1)  Der Differentiationssatz lautet allgemein:

$$\frac{{{\rm d}x( t )}}{{{\rm d}t}}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{\rm{j}} 2{\rm{\pi }}f \cdot X( f ).$$
  • Angewandt auf das vorliegende Beispiel erhält man:
$$Y( f ) = T \cdot {\rm{j}}\cdot 2{\rm{\pi }}f \cdot A \cdot T \cdot \frac{{\sin ^2 ( {{\rm{\pi }}fT} )}}{{( {{\rm{\pi }}fT} )^2 }} = {\rm{j}} \cdot 2 \cdot A\cdot T \cdot \frac{{\sin ^2 ( {{\rm{\pi }}fT} )}}{{{\rm{\pi }}fT}}.$$
  • Diese Funktion ist rein imaginär. Bei der Frequenz  $f = 0$  verschwindet auch der Imaginärteil. Dies kann man zum Beispiel durch Anwendung der Regel von l'Hospital formal nachweisen   ⇒   $Y( f = 0 ) \;\underline{= 0}$.
  • Das Ergebnis folgt aber auch aus der Tatsache, dass der Spektralwert bei  $f = 0$  gleich dem Integral über die Zeitfunktion  $y(t)$  ist.
  • Bei der normierten Frequenz  $f \cdot T = 0.5$  $($also für  $f = 1\,\text{ kHz})$  ist die Sinusfunktion gleich  $1$  und man erhält  $|Y(f = 1 \,\text{kHz})| = 4/\pi \cdot A \cdot T$, also näherungsweise  $|Y(f=1 \ \text{kHz})| \ \underline{=0.636 \,\text{ mV/Hz}}$  (positiv imaginär).


(2)  Richtig sind die Lösungsvorschläge 1 und 3:

  • Die Nullstellen von  $X(f)$  bleiben erhalten und es gibt eine weitere Nullstelle bei der Frequenz  $f = 0$.
  • Als asymptotischen Verlauf bezeichnet man die obere Schranke
$$\left| {Y_{\max }( f )} \right| = \frac{2A}{{{\rm{\pi }} \cdot |f|}} \ge \left| {Y( f )} \right|.$$
  • Für die Frequenzen, bei denen die Sinusfunktion die Werte  $\pm 1$  liefert, sind  $|Y_{\text{max}}(f)|$  und  $|Y(f)|$  identisch.
  • Beim Rechteckimpuls der Amplitude  $A$  lautet die entsprechende Schranke  $A/(\pi \cdot |f|)$.
  • Dagegen fällt das Spektrum  $X(f)$  des Dreieckimpulses asymptotisch schneller ab:
$$\left| {X_{\max }( f )} \right| = \frac{A}{{{\rm{\pi }}^{\rm{2}} f^2 T}} \ge \left| {X( f )} \right|.$$
  • Dies ist darauf zurückzuführen, dass  $x(t)$  keine Unstetigkeitsstellen aufweist.


(3)  Ausgehend von einem symmetrischen Rechteckimpuls  $r(t)$  mit Amplitude  $A$  und Dauer  $T$  kann das Signal  $y(t)$  auch wie folgt dargestellt werden:

$$y(t) = r( {t + T/2} ) - r( {t - T/2} ).$$
  • Durch zweimalige Anwendung des Verschiebungssatzes erhält man:
$$Y( f ) = R( f ) \cdot {\rm{e}}^{{\rm{j\pi }}fT} - R( f ) \cdot {\rm{e}}^{ - {\rm{j\pi }}fT} .$$
  • Mit der Beziehung  $\text{e}^{\text{j}x} – \text{e}^{–\text{j}x} = 2\text{j} \cdot \text{sin}(x)$  kann hierfür auch geschrieben werden:
$$Y( f ) = 2{\rm{j}} \cdot A \cdot T \cdot {\mathop{\rm si}\nolimits}( {{\rm{\pi }}fT} ) \cdot \sin ( {{\rm{\pi }}fT} ).$$
  • Es ergibt sich folgerichtig das gleiche Ergebnis wie in der Teilaufgabe  (1).
  • Welcher Weg schneller zum Ergebnis führt, muss jeder selbst für sich entscheiden. Der Autor meint, dass der erste Weg etwas günstiger ist.
  • Subjektiv entscheiden wir uns für den Lösungsvorschlag 1.