Difference between revisions of "Aufgaben:Exercise 3.8: Once more Mutual Information"

From LNTwww
Line 60: Line 60:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 2</u>:
 
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 2</u>:
*Mit $X = \{0, 1, 2\}$, $Y = \{0, 1, 2\}$ gilt $X + Y = \{0, 1, 2, 3, 4\}$. Auch die Wahrscheinlichkeiten stimmen mit der gegebenen Wahrscheinlichkeitsfunktion überein.  
+
*Mit&nbsp; $X = \{0,\ 1,\ 2\}$,&nbsp; $Y = \{0,\ 1,\ 2\}$&nbsp; gilt&nbsp; $X + Y = \{0,\ 1,\ 2,\ 3,\ 4\}$.&nbsp;
 +
*Auch die Wahrscheinlichkeiten stimmen mit der gegebenen Wahrscheinlichkeitsfunktion überein.  
 
*Die Überprüfung der beiden anderen Vorgaben zeigt, dass auch $W = X – Y + 2$ möglich ist, nicht jedoch $W = Y – X + 2$.
 
*Die Überprüfung der beiden anderen Vorgaben zeigt, dass auch $W = X – Y + 2$ möglich ist, nicht jedoch $W = Y – X + 2$.
  
  
'''(2)'''&nbsp; Aus der 2D–Wahrscheinlichkeitsfunktion $P_{ XW }(X, W)$ auf der Angabenseite erhält man für
+
 
 +
'''(2)'''&nbsp; Aus der 2D–Wahrscheinlichkeitsfunktion&nbsp; $P_{ XW }(X, W)$&nbsp; auf der Angabenseite erhält man für
 
*die Verbundentropie:
 
*die Verbundentropie:
 
:$$H(XW) =  {\rm log}_2 \hspace{0.1cm} (9)  
 
:$$H(XW) =  {\rm log}_2 \hspace{0.1cm} (9)  
= 3.170\,{\rm (bit)}
+
= 3.170\ {\rm (bit)}
 
\hspace{0.05cm},$$
 
\hspace{0.05cm},$$
* die Wahrsacheinlichkeitsfunktion der Zufallsgröße $W$:
+
* die Wahrsacheinlichkeitsfunktion der Zufallsgröße&nbsp; $W$:
:$$P_W(W) = \big [\hspace{0.05cm}1/9\hspace{0.05cm}, \hspace{0.05cm} 2/9\hspace{0.05cm},\hspace{0.05cm} 3/9 \hspace{0.05cm}, \hspace{0.05cm} 2/9\hspace{0.05cm}, \hspace{0.05cm} 1/9\hspace{0.05cm} \big ]\hspace{0.05cm},$$
+
:$$P_W(W) = \big [\hspace{0.05cm}1/9\hspace{0.05cm}, \hspace{0.15cm} 2/9\hspace{0.05cm},\hspace{0.15cm} 3/9 \hspace{0.05cm}, \hspace{0.15cm} 2/9\hspace{0.05cm}, \hspace{0.15cm} 1/9\hspace{0.05cm} \big ]\hspace{0.05cm},$$
 
*die Entropie der Zufallsgröße $W$:
 
*die Entropie der Zufallsgröße $W$:
 
:$$H(W) = 2 \cdot \frac{1}{9} \cdot {\rm log}_2 \hspace{0.1cm} \frac{9}{1} + 2 \cdot \frac{2}{9} \cdot {\rm log}_2 \hspace{0.1cm} \frac{9}{2} +
 
:$$H(W) = 2 \cdot \frac{1}{9} \cdot {\rm log}_2 \hspace{0.1cm} \frac{9}{1} + 2 \cdot \frac{2}{9} \cdot {\rm log}_2 \hspace{0.1cm} \frac{9}{2} +
 
\frac{3}{9} \cdot {\rm log}_2 \hspace{0.1cm} \frac{9}{3}
 
\frac{3}{9} \cdot {\rm log}_2 \hspace{0.1cm} \frac{9}{3}
  {= 2.197\,{\rm (bit)}} \hspace{0.05cm}.$$
+
  {= 2.197\ {\rm (bit)}} \hspace{0.05cm}.$$
  
Mit $H(X) = 1.585 \ \rm bit$ (wurde vorgegeben) ergibt sich somit für die ''Mutual Information'':  
+
Mit&nbsp; $H(X) = 1.585 \ \rm bit$&nbsp; (wurde vorgegeben) ergibt sich somit für die&nbsp; ''Mutual Information'':  
:$$I(X;W) = H(X) + H(W) - H(XW) = 1.585 + 2.197- 3.170\hspace{0.15cm} \underline {= 0.612\,{\rm (bit)}} \hspace{0.05cm}.$$
+
:$$I(X;W) = H(X) + H(W) - H(XW) = 1.585 + 2.197- 3.170\hspace{0.15cm} \underline {= 0.612\ {\rm (bit)}} \hspace{0.05cm}.$$
Das linke Schaubild verdeutlicht die Berechnung der Transinformation $I(X; W)$ zwischen der ersten Komponente $X$ und der Summe $W$.
 
  
[[File:P_ID2769__Inf_A_3_7d.png|center|frame|Zur Berechnung der Transinformation]]
+
[[File:P_ID2769__Inf_A_3_7d.png|right|frame|Zur Berechnung der Transinformation]]
 +
Das linke der beiden Schaubilder verdeutlicht die Berechnung der Transinformation&nbsp; $I(X; W)$&nbsp; zwischen der ersten Komponente&nbsp; $X$&nbsp; und der Summe&nbsp; $W$.
 +
<br clear=all>
 +
[[File:P_ID2770__Inf_A_3_7c.png|right|Verbundwahrscheinlichkeit zwischen&nbsp; $Z$&nbsp; und&nbsp; $W$]]
 +
'''(3)'''&nbsp;  Die zweite Grafik zeigt die Verbundwahrscheinlichkeit&nbsp; $P_{ ZW }(⋅)$.&nbsp; Das Schema besteht aus&nbsp; $5 · 9 = 45$&nbsp; Feldern im Gegensatz zur Darstellung von&nbsp; $P_{ XW }(⋅)$&nbsp; auf der Angabenseite mit&nbsp; $3 · 9 = 27$&nbsp; Feldern.
 +
*Von den&nbsp; $45$&nbsp; Feldern sind aber auch nur neun mit Wahrscheinlichkeiten ungleich Null belegt.&nbsp; Für die Verbundentropie gilt: &nbsp; $H(ZW)  = 3.170\ {\rm (bit)} \hspace{0.05cm}.$
 +
*Mit den weiteren Entropien&nbsp; $H(Z)  = 3.170\ {\rm (bit)}\hspace{0.05cm}$&nbsp; und&nbsp; $H(W)  = 2.197\ {\rm (bit)}\hspace{0.05cm}$&nbsp; entsprechend der&nbsp; [[Aufgaben:3.07Z_Tupel_aus_tern%C3%A4ren_Zufallsgr%C3%B6%C3%9Fen| Aufgabe 3.8Z]]&nbsp; bzw. der Teilfrage&nbsp; '''(2)'''&nbsp; dieser Aufgabe erhält man für die Transinformation:
 +
:$$I(Z;W) = H(Z) + H(W) - H(ZW) \hspace{0.15cm} \underline {= 2.197\,{\rm (bit)}} \hspace{0.05cm}.$$
  
[[File:P_ID2770__Inf_A_3_7c.png|right|Verbundwahrscheinlichkeit zwischen $Z$ und $W$]]
 
'''(3)'''&nbsp;  Die zweite Grafik zeigt die Verbundwahrscheinlichkeit $P_{ ZW }(⋅)$. Das Schema besteht aus $5 · 9 = 45$ Feldern im Gegensatz zur Darstellung von $P_{ XW }(⋅)$ auf der Angabenseite mit $3 · 9 = 27$ Feldern.
 
*Von den $45$ Feldern sind aber auch nur neun mit Wahrscheinlichkeiten ungleich $0$ belegt. Für die Verbundentropie gilt: &nbsp; $H(ZW)  = 3.170\,{\rm (bit)} \hspace{0.05cm}.$
 
*Mit den weiteren Entropien $H(Z)  = 3.170\,{\rm (bit)}\hspace{0.05cm}$ und $H(W)  = 2.197\,{\rm (bit)}\hspace{0.05cm}$ entsprechend der [[Aufgaben:3.07Z_Tupel_aus_tern%C3%A4ren_Zufallsgr%C3%B6%C3%9Fen| Aufgabe 3.8Z]] bzw. der Teilfrage '''(2)''' dieser Aufgabe erhält man für die Transinformation:
 
:$$I(Z;W) = H(Z) + H(W) - H(ZW) \hspace{0.15cm} \underline {= 2.197\,{\rm (bit)}} \hspace{0.05cm}.$$
 
  
 +
'''(4)'''&nbsp; <u>Alle drei Aussagen</u> treffen zu, wie auch aus dem rechten der beiden oberen Schaubilder ersichtlich ist.
  
'''(4)'''&nbsp; <u>Alle drei Aussagen</u> treffen zu, wie auch aus dem oberen Schaubild ersichtlich ist. Wir versuchen eine Interpretation dieser numerischen Ergebnisse:
+
Wir versuchen eine Interpretation dieser numerischen Ergebnisse:
* Die Verbundwahrscheinlichkeit $P_{ ZW }(⋅)$ setzt sich ebenso wie $P_{ XW }(⋅)$ aus neun gleichwahrscheinlichen Elementenungleich 0 zusammen. Damit ist offensichtlich, dass auch die Verbundentropien gleich sind &nbsp; ⇒ &nbsp; $H(ZW) =  H(XW) = 3.170 \ \rm (bit)$.   
+
* Die Verbundwahrscheinlichkeit&nbsp; $P_{ ZW }(⋅)$&nbsp; setzt sich ebenso wie&nbsp; $P_{ XW }(⋅)$&nbsp; aus neun gleichwahrscheinlichen Elementenungleich 0 zusammen. Damit ist offensichtlich, dass auch die Verbundentropien gleich sind &nbsp; ⇒ &nbsp; $H(ZW) =  H(XW) = 3.170 \ \rm (bit)$.   
* Wenn ich das Tupel $Z = (X, Y)$ kenne, kenne ich natürlich auch die Summe $W = X + Y$. Damit ist $H(W|Z) = 0$.  
+
* Wenn ich das Tupel&nbsp; $Z = (X, Y)$&nbsp; kenne, kenne ich natürlich auch die Summe&nbsp; $W = X + Y$.&nbsp; Damit ist&nbsp; $H(W|Z) = 0$.  
*Dagegen ist $H(Z|W) \ne 0$. Vielmehr gilt $H(Z|W) = H(X|W) = 0.973  \ \rm (bit)$.
+
*Dagegen ist&nbsp; $H(Z|W) \ne 0$.&nbsp; Vielmehr gilt&nbsp; $H(Z|W) = H(X|W) = 0.973  \ \rm (bit)$.
* Die Zufallsgröße $W$ liefert also die genau gleiche Information hinsichtlich des Tupels $Z$ wie für die Einzelkomponente $X$. Dies ist die verbale Interpretation der Aussage $H(Z|W) = H(X|W)$.
+
* Die Zufallsgröße&nbsp; $W$&nbsp; liefert also die genau gleiche Information hinsichtlich des Tupels&nbsp; $Z$&nbsp; wie für die Einzelkomponente&nbsp; $X$.&nbsp; Dies ist die verbale Interpretation der Aussage&nbsp; $H(Z|W) = H(X|W)$.
* Die gemeinsame Information von $Z$ und $W$ &nbsp; ⇒ &nbsp; $I(Z; W)$ ist größer als die gemeinsame Information von $X$ und $W$  &nbsp; ⇒ &nbsp; $I(X; W)$ , weil $H(W|Z) =0$ gilt, während $H(W|X)$ ungleich $0$ ist, nämlich genau so groß ist wie $H(X)$ :
+
* Die gemeinsame Information von&nbsp; $Z$&nbsp; und&nbsp; $W$&nbsp; &nbsp; ⇒ &nbsp; $I(Z; W)$&nbsp; ist größer als die gemeinsame Information von&nbsp; $X$&nbsp; und&nbsp; $W$  &nbsp; ⇒ &nbsp; $I(X; W)$, weil&nbsp; $H(W|Z) =0$&nbsp; gilt, während&nbsp; $H(W|X)$&nbsp; ungleich Null ist, nämlich genau so groß ist wie&nbsp; $H(X)$ :
 
:$$I(Z;W)  = H(W) - H(W|Z) = 2.197 - 0= 2.197\,{\rm (bit)} \hspace{0.05cm},$$
 
:$$I(Z;W)  = H(W) - H(W|Z) = 2.197 - 0= 2.197\,{\rm (bit)} \hspace{0.05cm},$$
 
:$$I(X;W) =  H(W) - H(W|X) = 2.197 - 1.585= 0.612\,{\rm (bit)} \hspace{0.05cm}.$$
 
:$$I(X;W) =  H(W) - H(W|X) = 2.197 - 1.585= 0.612\,{\rm (bit)} \hspace{0.05cm}.$$

Revision as of 14:34, 31 January 2020

„Wahrscheinlichkeiten” $P_{ XY }$  und  $P_{ XW }$

Wir betrachten das Tupel  $Z = (X, Y)$, wobei die Einzelkomponenten  $X$  und  $Y$  jeweils ternäre Zufallsgrößen darstellen:

$$X = \{ 0 ,\ 1 ,\ 2 \} , \hspace{0.3cm}Y= \{ 0 ,\ 1 ,\ 2 \}.$$

Die gemeinsame Wahrscheinlichkeitsfunktion  $P_{ XY }(X, Y)$  beider Zufallsgrößen ist in der oberen Grafik angegeben. 

In der  Aufgabe 3.8Z  wird diese Konstellation ausführlich analysiert.  Man erhält als Ergebnis (alle Angaben in „bit”):

  • $H(X) = H(Y) = \log_2 (3) = 1.585,$
  • $H(XY) = \log_2 (9) = 3.170,$
  • $I(X, Y) = 0,$
  • $H(Z) = H(XZ) = 3.170,$
  • $I(X, Z) = 1.585.$

Desweiteren betrachten wir die Zufallsgröße  $W = \{ 0,\ 1,\ 2,\ 3,\ 4 \}$, deren Eigenschaften sich aus der Verbundwahrscheinlichkeitsfunktion  $P_{ XW }(X, W)$  nach der unteren Skizze ergeben.  Die Wahrscheinlichkeiten sind in allen weiß hinterlegten Feldern jeweils Null.

Gesucht ist in der vorliegenden Aufgabe die Transinformation zwischen

  • den Zufallsgrößen  $X$  und  $W$   ⇒   $I(X; W)$,
  • den Zufallsgrößen  $Z$  und  $W   ⇒   I(Z; W)$.



Hinweise:


Fragebogen

1

Wie könnten die Größen  $X$,  $Y$  und  $W$  zusammenhängen?

$W = X + Y$,
$W = X - Y + 2$,
$W = Y - X + 2$.

2

Welche Transinformation besteht zwischen den Zufallsgrößen  $X$  und  $W$?

$I(X; W) \ = \ $

$\ \rm bit$

3

Welche Transinformation besteht zwischen den Zufallsgrößen  $Z$  und  $W$?

$I(Z; W) \ = \ $

$\ \rm bit$

4

Welche der nachfolgenden Aussagen sind zutreffend?

Es gilt  $H(ZW) = H(XW)$.
Es gilt  $H(W|Z) = 0$.
Es gilt  $I(Z; W) > I(X; W)$.


Musterlösung

(1)  Richtig sind die Lösungsvorschläge 1 und 2:

  • Mit  $X = \{0,\ 1,\ 2\}$,  $Y = \{0,\ 1,\ 2\}$  gilt  $X + Y = \{0,\ 1,\ 2,\ 3,\ 4\}$. 
  • Auch die Wahrscheinlichkeiten stimmen mit der gegebenen Wahrscheinlichkeitsfunktion überein.
  • Die Überprüfung der beiden anderen Vorgaben zeigt, dass auch $W = X – Y + 2$ möglich ist, nicht jedoch $W = Y – X + 2$.


(2)  Aus der 2D–Wahrscheinlichkeitsfunktion  $P_{ XW }(X, W)$  auf der Angabenseite erhält man für

  • die Verbundentropie:
$$H(XW) = {\rm log}_2 \hspace{0.1cm} (9) = 3.170\ {\rm (bit)} \hspace{0.05cm},$$
  • die Wahrsacheinlichkeitsfunktion der Zufallsgröße  $W$:
$$P_W(W) = \big [\hspace{0.05cm}1/9\hspace{0.05cm}, \hspace{0.15cm} 2/9\hspace{0.05cm},\hspace{0.15cm} 3/9 \hspace{0.05cm}, \hspace{0.15cm} 2/9\hspace{0.05cm}, \hspace{0.15cm} 1/9\hspace{0.05cm} \big ]\hspace{0.05cm},$$
  • die Entropie der Zufallsgröße $W$:
$$H(W) = 2 \cdot \frac{1}{9} \cdot {\rm log}_2 \hspace{0.1cm} \frac{9}{1} + 2 \cdot \frac{2}{9} \cdot {\rm log}_2 \hspace{0.1cm} \frac{9}{2} + \frac{3}{9} \cdot {\rm log}_2 \hspace{0.1cm} \frac{9}{3} {= 2.197\ {\rm (bit)}} \hspace{0.05cm}.$$

Mit  $H(X) = 1.585 \ \rm bit$  (wurde vorgegeben) ergibt sich somit für die  Mutual Information:

$$I(X;W) = H(X) + H(W) - H(XW) = 1.585 + 2.197- 3.170\hspace{0.15cm} \underline {= 0.612\ {\rm (bit)}} \hspace{0.05cm}.$$
Zur Berechnung der Transinformation

Das linke der beiden Schaubilder verdeutlicht die Berechnung der Transinformation  $I(X; W)$  zwischen der ersten Komponente  $X$  und der Summe  $W$.

Verbundwahrscheinlichkeit zwischen  '"`UNIQ-MathJax56-QINU`"'  und  '"`UNIQ-MathJax57-QINU`"'

(3)  Die zweite Grafik zeigt die Verbundwahrscheinlichkeit  $P_{ ZW }(⋅)$.  Das Schema besteht aus  $5 · 9 = 45$  Feldern im Gegensatz zur Darstellung von  $P_{ XW }(⋅)$  auf der Angabenseite mit  $3 · 9 = 27$  Feldern.

  • Von den  $45$  Feldern sind aber auch nur neun mit Wahrscheinlichkeiten ungleich Null belegt.  Für die Verbundentropie gilt:   $H(ZW) = 3.170\ {\rm (bit)} \hspace{0.05cm}.$
  • Mit den weiteren Entropien  $H(Z) = 3.170\ {\rm (bit)}\hspace{0.05cm}$  und  $H(W) = 2.197\ {\rm (bit)}\hspace{0.05cm}$  entsprechend der  Aufgabe 3.8Z  bzw. der Teilfrage  (2)  dieser Aufgabe erhält man für die Transinformation:
$$I(Z;W) = H(Z) + H(W) - H(ZW) \hspace{0.15cm} \underline {= 2.197\,{\rm (bit)}} \hspace{0.05cm}.$$


(4)  Alle drei Aussagen treffen zu, wie auch aus dem rechten der beiden oberen Schaubilder ersichtlich ist.

Wir versuchen eine Interpretation dieser numerischen Ergebnisse:

  • Die Verbundwahrscheinlichkeit  $P_{ ZW }(⋅)$  setzt sich ebenso wie  $P_{ XW }(⋅)$  aus neun gleichwahrscheinlichen Elementenungleich 0 zusammen. Damit ist offensichtlich, dass auch die Verbundentropien gleich sind   ⇒   $H(ZW) = H(XW) = 3.170 \ \rm (bit)$.
  • Wenn ich das Tupel  $Z = (X, Y)$  kenne, kenne ich natürlich auch die Summe  $W = X + Y$.  Damit ist  $H(W|Z) = 0$.
  • Dagegen ist  $H(Z|W) \ne 0$.  Vielmehr gilt  $H(Z|W) = H(X|W) = 0.973 \ \rm (bit)$.
  • Die Zufallsgröße  $W$  liefert also die genau gleiche Information hinsichtlich des Tupels  $Z$  wie für die Einzelkomponente  $X$.  Dies ist die verbale Interpretation der Aussage  $H(Z|W) = H(X|W)$.
  • Die gemeinsame Information von  $Z$  und  $W$    ⇒   $I(Z; W)$  ist größer als die gemeinsame Information von  $X$  und  $W$   ⇒   $I(X; W)$, weil  $H(W|Z) =0$  gilt, während  $H(W|X)$  ungleich Null ist, nämlich genau so groß ist wie  $H(X)$ :
$$I(Z;W) = H(W) - H(W|Z) = 2.197 - 0= 2.197\,{\rm (bit)} \hspace{0.05cm},$$
$$I(X;W) = H(W) - H(W|X) = 2.197 - 1.585= 0.612\,{\rm (bit)} \hspace{0.05cm}.$$