Difference between revisions of "Aufgaben:Exercise 2.1Z: 2D-Frequency and 2D-Time Representations"
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Mobile Kommunikation/Allgemeine Beschreibung zeitvarianter Systeme}} Datei:P_ID2145__Mob_z_2_1.png|right|frame|2D–Übertragun…“) |
|||
Line 3: | Line 3: | ||
[[File:P_ID2145__Mob_z_2_1.png|right|frame|2D–Übertragungsfunktion, als Realteil und Imaginärteil]] | [[File:P_ID2145__Mob_z_2_1.png|right|frame|2D–Übertragungsfunktion, als Realteil und Imaginärteil]] | ||
− | + | To describe a time-variant channel with several paths, the <i>two-dimensional impulse response</i> is used | |
− | + | $$h(\dew,\hspace{0.05cm}t) = \sum_{m = 1}^{M} z_m(t) \cdot {\rm \delta} (\tau - \tau_m)\hspace{0.05cm}.$$ | |
− | + | The first parameter $(\tau)$ indicates the delay time, the second $(t)$ makes statements about the time variance. | |
− | + | The Fourier transformation of $h(\tau, t)$ finally leads to the <i>time-variant transfer function</i> | |
:$$H(f,\hspace{0.05cm} t) | :$$H(f,\hspace{0.05cm} t) | ||
− | \hspace{0.2cm} \stackrel {f,\hspace{0.05cm}\ | + | \hspace{0.2cm} \stackrel {f,\hspace{0.05cm}{\a6}{\bullet}{\bullet\!-\!-\!-\!-\!-\!\circ} \hspace{0.2cm} h(\dew,\hspace{0.05cm}t) |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | In | + | In the graph, $H(f, t)$ is displayed as a function of frequency, for different values of absolute time $t$ in the range of $0 \ \text{...} \ 10 \ \rm ms$. |
− | + | In general, $H(f, t)$ is complex. The real part (top) and the imaginary part (bottom) are drawn separately. | |
Line 23: | Line 23: | ||
− | '' | + | ''Notes:'' |
− | * | + | * This task belongs to the topic of the chapter [[Mobile_Kommunikation/Allgemeine_Beschreibung_zeitvarianter_Systeme| Allgemeine Beschreibung zeitvarianter Systeme]]. |
− | * In | + | * In the above equation, an echo-free channel is represented with the parameter $M = 1$ . |
− | * | + | * Here are some numerical values of the specified time-variant transfer function: |
− | + | $$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0\, {\rm ms}) \approx 0.3 - {\rm j} \cdot 0.4 \hspace{0.05cm},\hspace{0.2cm} | |
− | H(f,\hspace{0.05cm} t = 2\, {\rm ms}) \approx 0.0 - {\rm j} \cdot 1.3 | + | H(f,\hspace{0.05cm} t = 2\, {\rm ms}) \approx 0.0 - {\rm j} \cdot 1.3 \hspace{0.05cm},$$ |
− | + | $$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 4\, {\rm ms}) \approx 0.1 - {\rm j} \cdot 1.5 \hspace{0.05cm},\hspace{0.2cm} | |
− | H(f,\hspace{0.05cm} t = 6\, {\rm ms}) \approx 0.5 - {\rm j} \cdot 0.8 | + | H(f,\hspace{0.05cm} t = 6\, {\rm ms}) \approx 0.5 - {\rm j} \cdot 0.8 \hspace{0.05cm},$$ |
− | + | $$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 8\, {\rm ms}) \approx 0.9 - {\rm j} \cdot 0.1 \hspace{0.05cm},\hspace{0.2cm} | |
− | H(f,\hspace{0.05cm} t = 10\, {\rm ms}) \approx 1.4 | + | H(f,\hspace{0.05cm} t = 10\, {\rm ms}) \approx 1.4 \hspace{0.05cm}.$$ |
− | * | + | * As can already be guessed from the above graphic, neither the real nor the imaginary part of the 2D–transfer function $H(f, t)$ are free of mean values. |
− | === | + | ===Questionnaire== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Is there a time variant channel here? |
|type="()"} | |type="()"} | ||
− | + | + | + Yes. |
− | - | + | - No. |
− | { | + | {Are there echoes on this channel? |
|type="()"} | |type="()"} | ||
− | - | + | - Yes. |
− | + | + | + No. |
− | { | + | {How can the 2D–impulse response be described here? |
|type="[]"} | |type="[]"} | ||
- $h(\tau, t) = A \cdot \delta(\tau) + B \cdot \delta(\tau \, –5 \, \rm µ s)$. | - $h(\tau, t) = A \cdot \delta(\tau) + B \cdot \delta(\tau \, –5 \, \rm µ s)$. | ||
− | - $h(\ | + | - $h(\dew, t) = A \cdot \delta(\dew)$. |
− | + $h(\ | + | + $h(\dew, t) = z(t) \cdot \delta(\dew)$. |
− | { | + | {Estimate which channel the data was recorded for. |
|type="()"} | |type="()"} | ||
− | - AWGN | + | - AWGN channel, |
− | - | + | - Two-way channel, |
− | - Rayleigh | + | - Rayleigh channel, |
− | + Rice | + | + Rice channel. |
</quiz> | </quiz> | ||
− | === | + | ===Sample solution=== |
− | {{ML-Kopf}} | + | {{{ML-Kopf}} |
− | '''(1)''' | + | '''(1)''' As can be seen in the graph, the transfer function $H(f, t)$ is dependent on $t$. Thus $h(\tau, t)$ is also time-dependent. Correct is therefore <u>YES</u>. |
− | '''(2)''' | + | '''(2)''' If we look at a fixed point in time, for example $t = 2 \ \rm ms$, we obtain the following for the time-variant transfer function |
− | + | $$H(f,\hspace{0.05cm} t = 2\, {\rm ms}) = - {\rm j} \cdot 1.3 \hspace{0.05cm} = {\rm const.}$$ | |
− | + | Thus the corresponding 2D–impulse response is | |
− | + | $$h(\dew,\hspace{0.05cm} t = 2\, {\rm ms}) = - {\rm j} \cdot 1.3 \cdot \delta (\dew) \hspace{0.05cm} | |
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} M = 1 \hspace{0.05cm}.$$ | \hspace{0.3cm}\Rightarrow \hspace{0.3cm} M = 1 \hspace{0.05cm}.$$ | ||
− | + | With a path, however, multipath propagation cannot occur. This means that the correct solution is <u>no</u>. | |
− | '''(3)''' | + | '''(3)''' The correct solution is <u>solution 3</u>: |
− | * | + | *There is time variance but no frequency selectivity. |
− | * | + | *Proposals 1 and 2, on the other hand, describe time-invariant systems. |
− | '''(4)''' | + | '''(4)''' Correct is the <u>solution 4</u>: |
− | * | + | *For the AWGN–channel no transfer function can be specified. |
− | * | + | *For a two-way channel, $H(f, t)$ is at no time $t$ constant. |
− | * | + | *Since in the $H(f, t)$–graph in real– and imaginary part in each case an equal part not equal to zero can be recognized, the Rayleigh–channel can also be excluded. |
− | * | + | *The data for the present task comes from a [[Mobile_Communication/Non-Frequency Selective_Fading_with_Direct Component#Channel Model_and_Rice.E2.80.93WDF| Rice–Channel]] with the following parameters: |
− | :$$\sigma = | + | :$$\sigma = {1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm} |
x_0 = {1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm}y_0 = -{1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm} | x_0 = {1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm}y_0 = -{1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm} | ||
− | f_{\rm D,\hspace{0.05cm} max} = 100\,\,{\rm Hz}\hspace{0.05cm}. | + | f_{\rm D,\hspace{0.05cm} max} = 100\,\,{\rm Hz}\hspace{0.05cm}.$ |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Revision as of 13:32, 15 April 2020
To describe a time-variant channel with several paths, the two-dimensional impulse response is used $$h(\dew,\hspace{0.05cm}t) = \sum_{m = 1}^{M} z_m(t) \cdot {\rm \delta} (\tau - \tau_m)\hspace{0.05cm}.$$
The first parameter $(\tau)$ indicates the delay time, the second $(t)$ makes statements about the time variance.
The Fourier transformation of $h(\tau, t)$ finally leads to the time-variant transfer function
- $$H(f,\hspace{0.05cm} t) \hspace{0.2cm} \stackrel {f,\hspace{0.05cm}{\a6}{\bullet}{\bullet\!-\!-\!-\!-\!-\!\circ} \hspace{0.2cm} h(\dew,\hspace{0.05cm}t) \hspace{0.05cm}.$$
In the graph, $H(f, t)$ is displayed as a function of frequency, for different values of absolute time $t$ in the range of $0 \ \text{...} \ 10 \ \rm ms$.
In general, $H(f, t)$ is complex. The real part (top) and the imaginary part (bottom) are drawn separately.
Notes:
- This task belongs to the topic of the chapter Allgemeine Beschreibung zeitvarianter Systeme.
- In the above equation, an echo-free channel is represented with the parameter $M = 1$ .
- Here are some numerical values of the specified time-variant transfer function:
$$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0\, {\rm ms}) \approx 0.3 - {\rm j} \cdot 0.4 \hspace{0.05cm},\hspace{0.2cm} H(f,\hspace{0.05cm} t = 2\, {\rm ms}) \approx 0.0 - {\rm j} \cdot 1.3 \hspace{0.05cm},$$ $$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 4\, {\rm ms}) \approx 0.1 - {\rm j} \cdot 1.5 \hspace{0.05cm},\hspace{0.2cm} H(f,\hspace{0.05cm} t = 6\, {\rm ms}) \approx 0.5 - {\rm j} \cdot 0.8 \hspace{0.05cm},$$ $$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 8\, {\rm ms}) \approx 0.9 - {\rm j} \cdot 0.1 \hspace{0.05cm},\hspace{0.2cm} H(f,\hspace{0.05cm} t = 10\, {\rm ms}) \approx 1.4 \hspace{0.05cm}.$$
- As can already be guessed from the above graphic, neither the real nor the imaginary part of the 2D–transfer function $H(f, t)$ are free of mean values.
=Questionnaire
Sample solution
{
(2) If we look at a fixed point in time, for example $t = 2 \ \rm ms$, we obtain the following for the time-variant transfer function
$$H(f,\hspace{0.05cm} t = 2\, {\rm ms}) = - {\rm j} \cdot 1.3 \hspace{0.05cm} = {\rm const.}$$
Thus the corresponding 2D–impulse response is $$h(\dew,\hspace{0.05cm} t = 2\, {\rm ms}) = - {\rm j} \cdot 1.3 \cdot \delta (\dew) \hspace{0.05cm} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} M = 1 \hspace{0.05cm}.$$
With a path, however, multipath propagation cannot occur. This means that the correct solution is no.
(3) The correct solution is solution 3:
- There is time variance but no frequency selectivity.
- Proposals 1 and 2, on the other hand, describe time-invariant systems.
(4) Correct is the solution 4:
- For the AWGN–channel no transfer function can be specified.
- For a two-way channel, $H(f, t)$ is at no time $t$ constant.
- Since in the $H(f, t)$–graph in real– and imaginary part in each case an equal part not equal to zero can be recognized, the Rayleigh–channel can also be excluded.
- The data for the present task comes from a Rice–Channel with the following parameters:
- $$\sigma = {1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm} x_0 = {1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm}y_0 = -{1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm} f_{\rm D,\hspace{0.05cm} max} = 100\,\,{\rm Hz}\hspace{0.05cm}.$