Difference between revisions of "Aufgaben:Exercise 2.1Z: 2D-Frequency and 2D-Time Representations"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Mobile Kommunikation/Allgemeine Beschreibung zeitvarianter Systeme}} Datei:P_ID2145__Mob_z_2_1.png|right|frame|2D–Übertragun…“)
 
Line 3: Line 3:
  
 
[[File:P_ID2145__Mob_z_2_1.png|right|frame|2D–Übertragungsfunktion, als Realteil und Imaginärteil]]
 
[[File:P_ID2145__Mob_z_2_1.png|right|frame|2D–Übertragungsfunktion, als Realteil und Imaginärteil]]
Zur Beschreibung eines zeitvarianten Kanals mit mehreren Pfaden verwendet man die <i>zweidimensionale Impulsantwort</i>
+
To describe a time-variant channel with several paths, the <i>two-dimensional impulse response</i> is used
:$$h(\tau,\hspace{0.05cm}t) = \sum_{m = 1}^{M} z_m(t) \cdot {\rm \delta} (\tau - \tau_m)\hspace{0.05cm}.$$
+
$$h(\dew,\hspace{0.05cm}t) = \sum_{m = 1}^{M} z_m(t) \cdot {\rm \delta} (\tau - \tau_m)\hspace{0.05cm}.$$
  
Der erste Parameter&nbsp; $(\tau)$&nbsp; kennzeichnet die Verzögerungszeit, der zweite &nbsp;$(t)$&nbsp; macht Aussagen über die Zeitvarianz.  
+
The first parameter&nbsp; $(\tau)$&nbsp; indicates the delay time, the second &nbsp;$(t)$&nbsp; makes statements about the time variance.  
  
Durch die Fouriertransformation von&nbsp; $h(\tau, t)$&nbsp; kommt man schließlich zur <i>zeitvarianten Übertragungsfunktion</i>
+
The Fourier transformation of&nbsp; $h(\tau, t)$&nbsp; finally leads to the <i>time-variant transfer function</i>
 
:$$H(f,\hspace{0.05cm} t)
 
:$$H(f,\hspace{0.05cm} t)
  \hspace{0.2cm}  \stackrel {f,\hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} h(\tau,\hspace{0.05cm}t)   
+
  \hspace{0.2cm}  \stackrel {f,\hspace{0.05cm}{\a6}{\bullet}{\bullet\!-\!-\!-\!-\!-\!\circ} \hspace{0.2cm} h(\dew,\hspace{0.05cm}t)   
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
In der Grafik ist&nbsp; $H(f, t)$&nbsp; in Abhängigkeit der Frequenz dargestellt, und zwar für verschiedene Werte der absoluten Zeit &nbsp;$t$&nbsp; im Bereich von $0 \ \text{...} \ 10 \ \rm ms$.
+
In the graph,&nbsp; $H(f, t)$&nbsp; is displayed as a function of frequency, for different values of absolute time &nbsp;$t$&nbsp; in the range of $0 \ \text{...} \ 10 \ \rm ms$.
  
Im Allgemeinen ist&nbsp; $H(f, t)$&nbsp; komplex. Der Realteil (oben) und der Imaginärteil (unten) sind separat gezeichnet.
+
In general,&nbsp; $H(f, t)$&nbsp; is complex. The real part (top) and the imaginary part (bottom) are drawn separately.
  
  
Line 23: Line 23:
  
  
''Hinweise:''
+
''Notes:''
* Die Aufgabe gehört zum Themengebiet des Kapitels&nbsp; [[Mobile_Kommunikation/Allgemeine_Beschreibung_zeitvarianter_Systeme| Allgemeine Beschreibung zeitvarianter Systeme]].
+
* This task belongs to the topic of the chapter&nbsp; [[Mobile_Kommunikation/Allgemeine_Beschreibung_zeitvarianter_Systeme| Allgemeine Beschreibung zeitvarianter Systeme]].
* In obiger Gleichung wird ein echofreier Kanal mit dem Paramter&nbsp; $M = 1$&nbsp; dargestellt.
+
* In the above equation, an echo-free channel is represented with the parameter&nbsp; $M = 1$&nbsp;.
* Hier noch einige Zahlenwerte der vorgegebenen zeitvarianten Übertragungsfunktion:
+
* Here are some numerical values of the specified time-variant transfer function:
:$$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0\, {\rm ms}) \approx 0.3 - {\rm j} \cdot 0.4 \hspace{0.05cm},\hspace{0.2cm}
+
$$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0\, {\rm ms}) \approx 0.3 - {\rm j} \cdot 0.4 \hspace{0.05cm},\hspace{0.2cm}
  H(f,\hspace{0.05cm} t = 2\, {\rm ms}) \approx 0.0 - {\rm j} \cdot 1.3 \hspace{0.05cm},$$
+
  H(f,\hspace{0.05cm} t = 2\, {\rm ms}) \approx 0.0 - {\rm j} \cdot 1.3 \hspace{0.05cm},$$
:$$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 4\, {\rm ms}) \approx 0.1 - {\rm j} \cdot 1.5 \hspace{0.05cm},\hspace{0.2cm}
+
$$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 4\, {\rm ms}) \approx 0.1 - {\rm j} \cdot 1.5 \hspace{0.05cm},\hspace{0.2cm}
  H(f,\hspace{0.05cm} t = 6\, {\rm ms}) \approx 0.5 - {\rm j} \cdot 0.8 \hspace{0.05cm},$$
+
  H(f,\hspace{0.05cm} t = 6\, {\rm ms}) \approx 0.5 - {\rm j} \cdot 0.8 \hspace{0.05cm},$$
:$$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 8\, {\rm ms}) \approx 0.9 - {\rm j} \cdot 0.1 \hspace{0.05cm},\hspace{0.2cm}
+
$$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 8\, {\rm ms}) \approx 0.9 - {\rm j} \cdot 0.1 \hspace{0.05cm},\hspace{0.2cm}
  H(f,\hspace{0.05cm} t = 10\, {\rm ms}) \approx 1.4   \hspace{0.05cm}.$$
+
  H(f,\hspace{0.05cm} t = 10\, {\rm ms}) \approx 1.4 \hspace{0.05cm}.$$
  
* Wie schon aus obiger Grafik zu erahnen ist, sind weder der Realteil noch der Imaginärteil der 2D&ndash;Übertragungsfunktion&nbsp; $H(f, t)$&nbsp; mittelwertfrei.
+
* As can already be guessed from the above graphic, neither the real nor the imaginary part of the 2D&ndash;transfer function&nbsp; $H(f, t)$&nbsp; are free of mean values.
  
  
  
===Fragebogen===
+
===Questionnaire==
 
<quiz display=simple>
 
<quiz display=simple>
{Liegt hier ein zeitvarianter Kanal vor?
+
{Is there a time variant channel here?
 
|type="()"}
 
|type="()"}
+ Ja.
+
+ Yes.
- Nein.
+
- No.
  
{Treten bei diesem Kanal Echos auf?
+
{Are there echoes on this channel?
 
|type="()"}
 
|type="()"}
- Ja.
+
- Yes.
+ Nein.
+
+ No.
  
{Wie kann hier die 2D&ndash;Impulsantwort beschrieben werden?
+
{How can the 2D&ndash;impulse response be described here?
 
|type="[]"}
 
|type="[]"}
 
- $h(\tau, t) = A \cdot \delta(\tau) + B \cdot \delta(\tau \, &ndash;5 \, \rm &micro; s)$.
 
- $h(\tau, t) = A \cdot \delta(\tau) + B \cdot \delta(\tau \, &ndash;5 \, \rm &micro; s)$.
- $h(\tau, t) = A \cdot \delta(\tau)$.
+
- $h(\dew, t) = A \cdot \delta(\dew)$.
+ $h(\tau, t) = z(t) \cdot \delta(\tau)$.
+
+ $h(\dew, t) = z(t) \cdot \delta(\dew)$.
  
{Schätzen Sie, für welchen Kanal die Daten aufgenommen wurden.
+
{Estimate which channel the data was recorded for.
 
|type="()"}
 
|type="()"}
- AWGN&ndash;Kanal,
+
- AWGN channel,
- Zweiwege&ndash;Kanal,
+
- Two-way channel,
- Rayleigh&ndash;Kanal,
+
- Rayleigh channel,
+ Rice&ndash;Kanal.
+
+ Rice channel.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Sample solution===
{{ML-Kopf}}
+
{{{ML-Kopf}}
'''(1)'''&nbsp; Wie aus der Grafik zu ersehen, ist die Übertragungsfunktion $H(f, t)$ abhängig von $t$. Damit ist auch $h(\tau, t)$ zeitabhängig. Richtig ist also <u>JA</u>.
+
'''(1)'''&nbsp; As can be seen in the graph, the transfer function $H(f, t)$ is dependent on $t$. Thus $h(\tau, t)$ is also time-dependent. Correct is therefore <u>YES</u>.
  
  
'''(2)'''&nbsp; Betrachtet man einen festen Zeitpunkt, zum Beispiel $t = 2 \ \rm ms$, so erhält man für die zeitvariante Übertragungsfunktion
+
'''(2)'''&nbsp; If we look at a fixed point in time, for example $t = 2 \ \rm ms$, we obtain the following for the time-variant transfer function
:$$H(f,\hspace{0.05cm} t = 2\, {\rm ms}) = - {\rm j} \cdot 1.3 \hspace{0.05cm} = {\rm const.}$$
+
$$H(f,\hspace{0.05cm} t = 2\, {\rm ms}) = - {\rm j} \cdot 1.3 \hspace{0.05cm} = {\rm const.}$$
  
Damit lautet die dazugehörige 2D&ndash;Impulsantwort:
+
Thus the corresponding 2D&ndash;impulse response is
:$$h(\tau,\hspace{0.05cm} t = 2\, {\rm ms}) = - {\rm j} \cdot 1.3 \cdot \delta (\tau) \hspace{0.05cm}  
+
$$h(\dew,\hspace{0.05cm} t = 2\, {\rm ms}) = - {\rm j} \cdot 1.3 \cdot \delta (\dew) \hspace{0.05cm}  
 
   \hspace{0.3cm}\Rightarrow \hspace{0.3cm} M = 1 \hspace{0.05cm}.$$
 
   \hspace{0.3cm}\Rightarrow \hspace{0.3cm} M = 1 \hspace{0.05cm}.$$
  
Mit einem Pfad kann es aber nicht zu Mehrwegausbreitung kommen. Das heißt, die richtige Lösung ist <u>NEIN</u>.
+
With a path, however, multipath propagation cannot occur. This means that the correct solution is <u>no</u>.
  
  
'''(3)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 3</u>:
+
'''(3)'''&nbsp; The correct solution is <u>solution 3</u>:
*Es liegt hier zwar Zeitvarianz, aber keine Frequenzselektivität vor.
+
*There is time variance but no frequency selectivity.
*Die Vorschläge 1 und 2 beschreiben dagegen zeitinvariante Systeme.
+
*Proposals 1 and 2, on the other hand, describe time-invariant systems.
  
  
'''(4)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 4</u>:  
+
'''(4)'''&nbsp; Correct is the <u>solution 4</u>:  
*Für den AWGN&ndash;Kanal kann keine Übertragungsfunktion angegeben werden.  
+
*For the AWGN&ndash;channel no transfer function can be specified.  
*Bei einem Zweiwegekanal ist $H(f, t)$ zu keiner Zeit $t$ konstant.  
+
*For a two-way channel, $H(f, t)$ is at no time $t$ constant.  
*Da in der $H(f, t)$&ndash;Grafik in Real&ndash; und Imaginärteil jeweils ein Gleichanteil ungleich Null zu erkennen ist, kann auch der Rayleigh&ndash;Kanal ausgeschlossen werden.  
+
*Since in the $H(f, t)$&ndash;graph in real&ndash; and imaginary part in each case an equal part not equal to zero can be recognized, the Rayleigh&ndash;channel can also be excluded.  
*Die Daten für die vorliegende Aufgabe stammen von einem [[Mobile_Kommunikation/Nichtfrequenzselektives_Fading_mit_Direktkomponente#Kanalmodell_und_Rice.E2.80.93WDF| Rice&ndash;Kanal]] mit folgenden Parametern:
+
*The data for the present task comes from a [[Mobile_Communication/Non-Frequency Selective_Fading_with_Direct Component#Channel Model_and_Rice.E2.80.93WDF| Rice&ndash;Channel]] with the following parameters:
:$$\sigma = {1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm}
+
:$$\sigma = {1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm}
 
  x_0 = {1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm}y_0 = -{1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm}
 
  x_0 = {1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm}y_0 = -{1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm}
   f_{\rm D,\hspace{0.05cm} max} = 100\,\,{\rm Hz}\hspace{0.05cm}.$$
+
   f_{\rm D,\hspace{0.05cm} max} = 100\,\,{\rm Hz}\hspace{0.05cm}.$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 13:32, 15 April 2020

2D–Übertragungsfunktion, als Realteil und Imaginärteil

To describe a time-variant channel with several paths, the two-dimensional impulse response is used $$h(\dew,\hspace{0.05cm}t) = \sum_{m = 1}^{M} z_m(t) \cdot {\rm \delta} (\tau - \tau_m)\hspace{0.05cm}.$$

The first parameter  $(\tau)$  indicates the delay time, the second  $(t)$  makes statements about the time variance.

The Fourier transformation of  $h(\tau, t)$  finally leads to the time-variant transfer function

$$H(f,\hspace{0.05cm} t) \hspace{0.2cm} \stackrel {f,\hspace{0.05cm}{\a6}{\bullet}{\bullet\!-\!-\!-\!-\!-\!\circ} \hspace{0.2cm} h(\dew,\hspace{0.05cm}t) \hspace{0.05cm}.$$

In the graph,  $H(f, t)$  is displayed as a function of frequency, for different values of absolute time  $t$  in the range of $0 \ \text{...} \ 10 \ \rm ms$.

In general,  $H(f, t)$  is complex. The real part (top) and the imaginary part (bottom) are drawn separately.




Notes:

  • This task belongs to the topic of the chapter  Allgemeine Beschreibung zeitvarianter Systeme.
  • In the above equation, an echo-free channel is represented with the parameter  $M = 1$ .
  • Here are some numerical values of the specified time-variant transfer function:

$$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0\, {\rm ms}) \approx 0.3 - {\rm j} \cdot 0.4 \hspace{0.05cm},\hspace{0.2cm} H(f,\hspace{0.05cm} t = 2\, {\rm ms}) \approx 0.0 - {\rm j} \cdot 1.3 \hspace{0.05cm},$$ $$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 4\, {\rm ms}) \approx 0.1 - {\rm j} \cdot 1.5 \hspace{0.05cm},\hspace{0.2cm} H(f,\hspace{0.05cm} t = 6\, {\rm ms}) \approx 0.5 - {\rm j} \cdot 0.8 \hspace{0.05cm},$$ $$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 8\, {\rm ms}) \approx 0.9 - {\rm j} \cdot 0.1 \hspace{0.05cm},\hspace{0.2cm} H(f,\hspace{0.05cm} t = 10\, {\rm ms}) \approx 1.4 \hspace{0.05cm}.$$

  • As can already be guessed from the above graphic, neither the real nor the imaginary part of the 2D–transfer function  $H(f, t)$  are free of mean values.


=Questionnaire

1

Is there a time variant channel here?

Yes.
No.

2

Are there echoes on this channel?

Yes.
No.

3

How can the 2D–impulse response be described here?

$h(\tau, t) = A \cdot \delta(\tau) + B \cdot \delta(\tau \, –5 \, \rm µ s)$.
$h(\dew, t) = A \cdot \delta(\dew)$.
$h(\dew, t) = z(t) \cdot \delta(\dew)$.

4

Estimate which channel the data was recorded for.

AWGN channel,
Two-way channel,
Rayleigh channel,
Rice channel.


Sample solution

{

(1)  As can be seen in the graph, the transfer function $H(f, t)$ is dependent on $t$. Thus $h(\tau, t)$ is also time-dependent. Correct is therefore YES.


(2)  If we look at a fixed point in time, for example $t = 2 \ \rm ms$, we obtain the following for the time-variant transfer function $$H(f,\hspace{0.05cm} t = 2\, {\rm ms}) = - {\rm j} \cdot 1.3 \hspace{0.05cm} = {\rm const.}$$

Thus the corresponding 2D–impulse response is $$h(\dew,\hspace{0.05cm} t = 2\, {\rm ms}) = - {\rm j} \cdot 1.3 \cdot \delta (\dew) \hspace{0.05cm} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} M = 1 \hspace{0.05cm}.$$

With a path, however, multipath propagation cannot occur. This means that the correct solution is no.


(3)  The correct solution is solution 3:

  • There is time variance but no frequency selectivity.
  • Proposals 1 and 2, on the other hand, describe time-invariant systems.


(4)  Correct is the solution 4:

  • For the AWGN–channel no transfer function can be specified.
  • For a two-way channel, $H(f, t)$ is at no time $t$ constant.
  • Since in the $H(f, t)$–graph in real– and imaginary part in each case an equal part not equal to zero can be recognized, the Rayleigh–channel can also be excluded.
  • The data for the present task comes from a Rice–Channel with the following parameters:
$$\sigma = {1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm} x_0 = {1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm}y_0 = -{1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm} f_{\rm D,\hspace{0.05cm} max} = 100\,\,{\rm Hz}\hspace{0.05cm}.$