Difference between revisions of "Aufgaben:Exercise 1.7: PDF of Rice Fading"
Line 3: | Line 3: | ||
[[File:P_ID2133__Mob_A_1_7.png|right|frame| Rice-Fading für verschiedene Werte von $|z_0|^2$]] | [[File:P_ID2133__Mob_A_1_7.png|right|frame| Rice-Fading für verschiedene Werte von $|z_0|^2$]] | ||
− | As you can see in the diagram, we consider the same scenario as in [[Aufgaben:Exercise_1.6: | + | As you can see in the diagram, we consider the same scenario as in [[Aufgaben:Exercise_1.6:_Autocorrelation_Function_and_PSD_with_Rice_Fading| Exercise 1.6]]: |
* <i>Rice fading</i> with variance $\sigma^2 = 1$ the Gaussian processes and the parameter $|z_0|$ for the direct path. | * <i>Rice fading</i> with variance $\sigma^2 = 1$ the Gaussian processes and the parameter $|z_0|$ for the direct path. | ||
* Regarding direct path, we are interested in the parameter values $|z_0|^2 = 0, \ 2, \ 4, \ 10, \ 20$ (see graphic). | * Regarding direct path, we are interested in the parameter values $|z_0|^2 = 0, \ 2, \ 4, \ 10, \ 20$ (see graphic). |
Revision as of 11:49, 15 April 2020
As you can see in the diagram, we consider the same scenario as in Exercise 1.6:
- Rice fading with variance $\sigma^2 = 1$ the Gaussian processes and the parameter $|z_0|$ for the direct path.
- Regarding direct path, we are interested in the parameter values $|z_0|^2 = 0, \ 2, \ 4, \ 10, \ 20$ (see graphic).
- The WDF of the amount $a(t) = |z(t)|$ is
- $$f_a(a) = \frac{a}{\sigma^2} \cdot {\rm exp} [ -\frac{a^2 + |z_0|^2}{2\sigma^2}] \cdot {\rm I}_0 \left [ \frac{a \cdot |z_0|}{\sigma^2} \right ]\hspace{0.05cm}.$ * For example, the modified zero-order Bessel function returns the following values: $${\rm I }_0 (2) = 2.28\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (4) = 11.30\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (3) = 67.23
\hspace{0.05cm}.$$ * The quadratic expectation value ⇒ power of the multiplicative factor $|z(t)|$, is equal $${\rm E}\left [ a^2 \right ] = {\rm E}\left [ |z(t)|^2 \right ] = 2 \cdot \sigma^2 + |z_0|^2 \hspace{0.05cm}.$$ * With $z_0 = 0$ the <i>Rice fading</i> becomes the more critical <i>Rayleigh fading</i>. In this case, the probability that $a$ lies in the yellow-shaded area between $0$ and $1$ applies: $$$ {\rm Pr}(a \le 1) = 1 - {\rm e}^{-0.5/\sigma^2} \approx 0.4 \hspace{0.05cm}.'"`UNIQ-MathJax24-QINU`"'{\rm Pr}(a \le 1) = {1}/{2} \cdot f_a(a=1) \hspace{0.05cm}.'"`UNIQ-MathJax25-QINU`"'f_a(a) = a \cdot {\rm exp} [ -\frac{a^2 + 4}{2}] \cdot {\rm I}_0 (2a)\hspace{0.05cm}.$
- This gives the values searched for:
- $$f_a(a = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 \cdot {\rm e}^{-2.5} \cdot {\rm I}_0 (2) = 0.082 \cdot 2.28 \hspace{0.15cm} \underline{ = 0.187}\hspace{0.05cm},$$
- $$f_a(a = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2 \cdot {\rm e}^{-4} \cdot {\rm I}_0 (4) = 2 \cdot 0.0183 \cdot 11.3 \hspace{0.15cm} \underline{ = 0.414}\hspace{0.05cm},$$
- $$f_a(a = 3) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 3 \cdot {\rm e}^{-6.5} \cdot {\rm I}_0 (6) = 3 \cdot 0.0015 \cdot 67.23 \hspace{0.15cm} \underline{ = 0.303}\hspace{0.05cm}.$$
- The results fit well with the blue curve on the specifications page.
(2) With the result of the subtask (1) ⇒ $f_a(a = 1) = 0.187$ is obtained with the triangle approximation: $${\rm Pr}(a \le 1) = {1}/{2} \cdot 0.187 \cdot 1\hspace{0.15cm} \underline{ \approx 9.4\,\%} \hspace{0.05cm}.$$
- This result will be a bit too large, because the blue curve is below the connecting line from $(0, 0)$ to $(1, 0.187)$ ⇒ convex curve.
(3) For the red curve the WDF–value $f_a(a = 1) \approx 0.35$ can be read from the Graphic on the data page. From this follows: $${\rm Pr}(a \le 1) = \frac{1}{2} \cdot 0.35 \hspace{0.15cm} \underline{ \approx 17.5\,\%} \hspace{0.05cm}.$ *This probability value will be a little too small because the red curve is concave in the range between $0$ and $1$. '''(4)''' The Gaussian approximation states that one can approximate the Rice distribution by a Gaussian distribution with mean $|z_0| = \sqrt{10} = 3.16$ and dispersion $\sigma = 1$ if the quotient $|z_0|/\sigma$ is sufficiently large. Then applies: $${\rm Pr}(a \le 1) \approx {\rm Pr}(g \le -2.16) = {\rm Q}(2.16) \hspace{0.15cm} \underline{ \approx 1.5\,\%} \hspace{0.05cm}.$ *Here $g$ denotes a Gaussian distributed random variable with the mean value $0$ and the dispersion $\sigma = 1$. *The numerical value was determined with the specified interactive [[Applets:QFunction|Applet]]. <i>Note:</i> The Gaussian approximation is certainly associated with a certain error here: *From the graph you can see that the average value of the green curve is not $a = $3.16$, but rather $3.31$.
- Then the power of the Gaussian approximation $(3.31^2 + 1^2 = 12)$ is exactly the same as that of the Rice distribution:
- $$|z_0|^2 + 2 \sigma^2= 10 + 2 =12\hspace{0.05cm}.$$
(5) Using the same calculation method, replace the Rice–WDF with a Gauss–WDF with mean value $\sqrt{20} \approx $4.47 and spread $\sigma = $1 and you get
$${\rm Pr}(a \le 1) \approx {\rm Pr}(g \le -3.37) = {\rm Q}(3.37) { \approx 0.04\,\%} \hspace{0.05cm}.$$
- If one assumes the equal power Gaussian distribution (see the note to the last subtask), the mean value is $m_g = \sqrt{21}\approx 4.58$, and the probability would then be
$${\rm Pr}(a \le 1) \approx {\rm Q}(3.58) \hspace{0.15cm} \underline{ \approx 0.02\,\%} \hspace{0.05cm}.$$