Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 2.2Z: Real Two-Path Channel"

From LNTwww
Line 36: Line 36:
 
|type="{}"}
 
|type="{}"}
 
Δd = { 2,996 3% }   m
 
Δd = { 2,996 3% }   m
 Deltaτ = { 9,987 3% }   ns
+
Δτ = { 9,987 3% }   ns
  
 
{What equation results for the path delay difference  δτ  with the approximation (1+ε)1+ε/2 valid for small  ε ?
 
{What equation results for the path delay difference  δτ  with the approximation (1+ε)1+ε/2 valid for small  ε ?

Revision as of 15:10, 15 April 2020

Zweiwege–Szenario

The sketched scenario is considered in which the transmitted signal  s(t)  reaches the antenna of the receiver via two paths: r(t) = r1(t)+r2(t)=k1s(tτ1)+k2s(tτ2).

Note the following:

  • The delays  τ1  and  τ2  of the main and secondary paths can be calculated from the path lengths  d1  and  d2  using the speed of light  c=3108 m/s .
  • The amplitude factors  k1  and  k2  are obtained according to the path loss model with path loss exponent  γ=2  (free-space attenuation).
  • The height of the transmit antenna is  hS=500 m. The height of the receiving antenna is  hE=30 m. The antennas are separated by a distance of  d=10  km.
  • The reflection on the secondary path causes a phase change of  π, so that the partial signals must be subtracted. This is taken into account by a negative  k2 value.



Note:



Questionnaire

1

Calculate the length  d1  of the direct path

d1 = 

  m

2

Calculate the length  d2  of the reflected path

d2 = 

  m

3

Which differences  Δd=d2 d1  and  Δτ=τ2τ1  (term) result from exact calculation?

Δd = 

  m
Δτ = 

  ns

4

What equation results for the path delay difference  δτ  with the approximation (1+ε)1+ε/2 valid for small  ε ?

Δτ=(hS hE)/d,
Δτ=(hS hE)/(cd),
Δτ=2hShE/(cd).

5

Which statements apply for the amplitude coefficients  k1  and  k2 ?

The coefficients  k1  and  k2  are almost equal in magnitude.
The magnitudes  |k1|  and  |k2|  differ significantly.
The coefficients  |k1|  and  |k2|  differ in sign.


Sample solution

(1)  According to „Pythagoras”: d1=d2+(hShE)2=102+(0.50.03)2km=10011.039m_.

  • Actually, specifying such a length with an accuracy of one millimeter is not very useful and contradicts the mentality of an engineer.
  • We have done this anyway to be able to check the accuracy of the approximation searched for in the subtask (4).


(2)  If you fold the reflected beam right vpn xR downwards (reflection on the ground), you get again a right-angled triangle. From this follows: d2=d2+(hS+hE)2=102+(0.5+0.03)2km=10014.035m_.


(3)  With the results from (1) and (2) you get for the lengths– and the runtime difference:

$$\Delta d = d_2 - d_1 = \hspace{0.1cm} \underline {=2,996\,{\rm m} \hspace{0.05cm},\hspace{1cm} \delta \tau = \frac{\delta d}{c} = \frac{2,996\,{\rm m}}}{3 \cdot 10^8 \,{\rm m/s}} \hspace{0.1cm} \underline {=9,987\,{\rm ns} \hspace{0.05cm}.$$

(4)  With hS+hEd the above equation can be expressed as follows: $$d_1 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} d \cdot \sqrt{1 + \frac{(h_{\rm S}- h_{\rm E})^2}{d^2} \approx d \cdot \left [ 1 + \frac{(h_{\rm S}- h_{\rm E})^2}{2d^2} \right ] \hspace{0.05cm},\hspace{1cm} d_2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} d \cdot \sqrt{1 + \frac{(h_{\rm S}+ h_{\rm E})^2}{d^2} \approx d \cdot \left [ 1 + \frac{(h_{\rm S}+ h_{\rm E})^2}{2d^2} \right ] \Rightarrow \hspace{0.3cm} \delta d = d_2 - d_1 \approx \frac {1}{2d} \cdot \left [ (h_{\rm S}+ h_{\rm E})^2 - (h_{\rm S}- h_{\rm E})^2 \right ] = \frac {2 \cdot h_{\rm S}\cdot h_{\rm E}}{d}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \delta \tau = \frac{\delta d}{c} \approx \frac {2 \cdot h_{\rm S}\cdot h_{\rm E}}{c \cdot d} \hspace{0.05cm}.$$

  • So the correct solution is the solution 3. With the given numerical values you get for this:

Δτ2500m30m3108m/s10000m=108s=10ns.

  • The relative falsification to the actual value according to the subtask '(3) is only 0.13%.
  • In solution 1 the unit is already wrong.
  • In solution 2, there would be no propagation delay if both antennas were the same height. This is certainly not true.


(5)  The path loss exponent γ=2 says that the reception power PE decreases quadratically with distance.

  • The signal amplitude thus decreases with 1/d, and with a constant K applies:
k1=Kd1,|k2|=Kd2|k2|k1=d1d2=10011,039m10014,035m0.99.
  • The two path weights thus only differ in amount by about 1%.
  • However, the coefficients k1 and k2 have different signs   ⇒   Correct are the answers 1 and 3.