Difference between revisions of "Aufgaben:Exercise 2.5: Scatter Function"
Line 3: | Line 3: | ||
[[File:P_ID2164__Mob_A_2_5.png|right|frame|Verzögerungs–Doppler–Funktion]] | [[File:P_ID2164__Mob_A_2_5.png|right|frame|Verzögerungs–Doppler–Funktion]] | ||
− | For the mobile radio channel as a time-variant system, there are a total of four system functions that are linked with each other via the Fourier | + | For the mobile radio channel as a time-variant system, there are a total of four system functions that are linked with each other via the Fourier transform. With the nomenclature from our learning tutorial, these are: |
− | * the time-variant impulse response $h(\tau, \hspace{0.05cm}t)$, which we also | + | * the time-variant impulse response $h(\tau, \hspace{0.05cm}t)$, which we also denote here as $\eta_{\rm VZ}(\tau,\hspace{0.05cm} t)$ , |
− | * the delay | + | * the delay-Doppler function $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$, |
− | * the frequency | + | * the frequency-Doppler function $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$, |
− | * the time variant transfer function $\eta_{\rm FZ}(f,\hspace{0.05cm}t)$ or $H(f, \hspace{0.05cm}t)$. | + | * the time-variant transfer function $\eta_{\rm FZ}(f,\hspace{0.05cm}t)$ or $H(f, \hspace{0.05cm}t)$. |
− | The indices represent the <b>V</b> | + | The indices represent the delay (<b>V</b>) $\tau$, the time (<b>Z</b>) $t$, the frequency (<b>F</b>) $f$ and the Doppler frequency (<b>D</b>) $f_{\rm D}$. |
− | + | The delay–Doppler function $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$ is shown in the top plot: | |
− | $$\eta_{\rm VD}(\ | + | :$$\eta_{\rm VD}(\tau, f_{\rm D}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2}} \cdot \delta (\tau) \cdot \delta (f_{\rm D} - 100\,{\rm Hz})-$$ |
− | :$$\hspace{1.75cm} \ - \ \hspace{-0.1cm} \frac{1}{2} \cdot \delta (\ | + | :$$\hspace{1.75cm} \ - \ \hspace{-0.1cm} \frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} - 50\,{\rm Hz})- |
− | \frac{1}{2} \cdot \delta (\ | + | \frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} + 50\,{\rm Hz}) |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | In the literature $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$ often also called <i> | + | In the literature, $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$ is often also called <i>scatter function</i> and denoted with $s(\tau, \hspace{0.05cm}f_{\rm D})$ . |
− | |||
− | |||
− | |||
− | |||
− | |||
+ | In this task, the associated delay–time function $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$ and the frequency–Doppler function $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$ are to be determined. | ||
Line 37: | Line 33: | ||
===Questionnaire=== | ===Questionnaire=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | + | {At which values of $\tau$ are the components of 2D impulse response $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$ ? | |
+ | At | ||
|type="[]"} | |type="[]"} | ||
+ $\tau = 0$, | + $\tau = 0$, | ||
Line 43: | Line 40: | ||
- other $\tau$–values. | - other $\tau$–values. | ||
− | {Calculate $|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm}t)|$. Which of the following statements | + | {Calculate $|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm}t)|$. Which of the following statements are true? |
|type="()"} | |type="()"} | ||
+ $|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm} t)|$ is independent of $t$. | + $|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm} t)|$ is independent of $t$. | ||
− | - | + | - $\eta_{\rm VZ}(\tau = 0, \hspace{0.05cm}t) = A \cdot \cos {(2\pi f_0 t)}$. |
− | - | + | - $\eta_{\rm VZ}(\tau = 0, \hspace{0.05cm}t) = A \cdot \sin {(2\pi f_0 t)}$. |
− | {Calculate $|\eta_{\rm VZ}(\dew = 1 \ {\rm µ s},\hspace{0.05cm} t)|$. Which of the statements | + | {Calculate $|\eta_{\rm VZ}(\dew = 1 \ {\rm µ s},\hspace{0.05cm} t)|$. Which of the following statements are true? |
|type="()"} | |type="()"} | ||
- $|\eta_{\rm VZ}(\tau = 1 \ {\rm µ s},\hspace{0.05cm} t)|$ is independent of $t$. | - $|\eta_{\rm VZ}(\tau = 1 \ {\rm µ s},\hspace{0.05cm} t)|$ is independent of $t$. | ||
− | + | + | + $\eta_{\rm VZ}(\tau = 1 \ {\rm µ s}, \hspace{0.05cm}t) = A \cdot \cos {(2\pi f_0 t)}$. |
− | - | + | - $\eta_{\rm VZ}(\tau = 1 \ {\rm µ s}, \hspace{0.05cm}t) = A \cdot \sin {(2\pi f_0 t)}$. |
− | { | + | {Consider now the frequency–Doppler representation $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$. For which values of $f_{\rm D}$– is this function <b>not</b> equal to zero? |
+ | For | ||
|type="[]"} | |type="[]"} | ||
- $f_{\rm D} = 0$, | - $f_{\rm D} = 0$, | ||
Line 61: | Line 59: | ||
- $f_{\rm D} = ± 100 \ \rm Hz$. | - $f_{\rm D} = ± 100 \ \rm Hz$. | ||
− | {Which of the following statements | + | {Which of the following statements are true for $\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D})$? |
|type="()"} | |type="()"} | ||
+ $|\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D} = 100 \ \rm Hz)|$ is independent of $f_{\rm D}$. | + $|\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D} = 100 \ \rm Hz)|$ is independent of $f_{\rm D}$. | ||
− | - | + | - $\eta_{\rm FD}(f, \hspace{0.05cm} f_{\rm D} = 50 \ {\rm Hz}) = A \cdot \cos {(2\pi t_0 f)}$. |
− | - | + | - $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D} = 50 \ {\rm Hz}) = A \cdot \sin {(2\pi t_0 f)}$. |
− | {How do you get the time variant transfer function $\eta_{\rm FZ}(f, \hspace{0.05cm}t)$? | + | {How do you get the time-variant transfer function $\eta_{\rm FZ}(f, \hspace{0.05cm}t)$? |
|type="[]"} | |type="[]"} | ||
− | - By Fourier transformation of $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$ | + | - By Fourier transformation of $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$ with respect to $\tau$. |
− | + By Fourier transformation of $\eta_{\rm VZ}(\thaw, \hspace{0.05cm}t)$ | + | + By Fourier transformation of $\eta_{\rm VZ}(\thaw, \hspace{0.05cm}t)$ with respect to $\thaw$. |
− | + By Fourier inverse transformation of $\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D})$ | + | + By Fourier inverse transformation of $\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D})$ with respect to $f_{\rm D}$. |
</quiz> | </quiz> | ||
Revision as of 15:57, 15 April 2020
For the mobile radio channel as a time-variant system, there are a total of four system functions that are linked with each other via the Fourier transform. With the nomenclature from our learning tutorial, these are:
- the time-variant impulse response $h(\tau, \hspace{0.05cm}t)$, which we also denote here as $\eta_{\rm VZ}(\tau,\hspace{0.05cm} t)$ ,
- the delay-Doppler function $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$,
- the frequency-Doppler function $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$,
- the time-variant transfer function $\eta_{\rm FZ}(f,\hspace{0.05cm}t)$ or $H(f, \hspace{0.05cm}t)$.
The indices represent the delay (V) $\tau$, the time (Z) $t$, the frequency (F) $f$ and the Doppler frequency (D) $f_{\rm D}$.
The delay–Doppler function $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$ is shown in the top plot:
- $$\eta_{\rm VD}(\tau, f_{\rm D}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2}} \cdot \delta (\tau) \cdot \delta (f_{\rm D} - 100\,{\rm Hz})-$$
- $$\hspace{1.75cm} \ - \ \hspace{-0.1cm} \frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} - 50\,{\rm Hz})- \frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} + 50\,{\rm Hz}) \hspace{0.05cm}.$$
In the literature, $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$ is often also called scatter function and denoted with $s(\tau, \hspace{0.05cm}f_{\rm D})$ .
In this task, the associated delay–time function $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$ and the frequency–Doppler function $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$ are to be determined.
Notes:
- This task should clarify the subject matter of the chapter Das GWSSUS–Kanalmodell.
- The relationship between the individual system functions is given in the graph on the first page of this chapter.
- Note that the magnitude function $|\eta_{\rm VD}(\tau, \hspace{0.05cm} f_{\rm D})|$ is shown above, so negative weights of the Dirac functions cannot be recognized.
Questionnaire
Sample solution
{
- Accordingly, $\eta_{\rm VZ}(\tau,\hspace{0.05cm} t)$ is identical for all values of $\tau$ $0$, for which no shares can be recognized in the scatter–function $\eta_{\rm VD}(\tau, f_{\rm D})$.
- The solutions 1 and 2 are therefore correct: Only for $\tau = 0$ and $\tau = 1 \ \ \rm \mu s$ the time variant impulse response has finite values.
(2) For the delay $\tau = 0$ the scatter–function ($\eta_{\rm VD}$) consists of a single Dirac at $f_{\rm D} = 100 \ \rm Hz$.
- For the searched time function is valid according to the second Fourier integral:
$$\eta_{\rm VZ}(\tau = 0, t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2} \cdot \int\limits_{-\infty}^{+\infty} \delta (f_{\rm D} - 100\,{\rm Hz}) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} 2 \pi f_{\rm D} t}\hspace{0.15cm}{\rm d}f_{\rm D} =\frac{1}{\sqrt{2}} \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi t \hspace{0.05cm}\cdot \hspace{0.05cm}100\,{\rm Hz}} .$$
- The correct solution is therefore solution 1.
(3) For the delay time $\tau = 1 \ \ \rm µ s$ the delay–Doppler–function consists of two Dirac functions at $±50 \ \rm Hz$, each with the weight $-0.5$.
- The time function thus results in
$$\eta_{\rm VZ}(\tau = 1\,{\rm \mu s}, t) = - \cos( 2 \pi t \cdot 50\,{\rm Hz})\hspace{0.05cm}.$ *This function can be represented with $A = -1$ and $f_0 = 50 \ \rm Hz$ according to <u>solution 2</u>. '''(4)''' The three Dirac functions $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$ are at the Doppler frequencies $+100 \ \rm Hz$, $+50 \ \rm Hz$ and $-50 \ \rm Hz$. *For all other Doppler frequencies, therefore, $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D}) must also be \equiv 0$. *The <u>solution is therefore correct here the <u>solution 2</u>. '''(5)'''' If one looks at the scatter–function $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$ in the direction of the $\tau$–axis, one recognizes only one Dirac function each at the Doppler frequencies $100 \ \rm Hz$ and $±50 \ \rm Hz$. *Here, depending on $f$, complex exponential oscillations with constant magnitude result in each case (from which it follows that the <u>solution 1</u> is correct): $$|\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D} = 100\,{\rm Hz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{\sqrt{2}} = {\rm const.}$$ $$| \eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D}= \pm 50\,{\rm Hz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.5 = {\rm const.}$$ [[File:P_ID2168__Mob_A_2_5e_new.png|right|frame|interrelation of all system functions]] '''(6)''' As can be seen from the given [[Mobile_Communications/The_GWSSUS%E2%80%93Channel Model#Generalized_System Functions_Time-Variant_Systems|Graphics]], the <u>solution alternatives 2 and 3</u> are applicable. *The graphic shows all system functions. *The Fourier correspondences (shown in green) illustrate the relationships between these system functions. ''Note:'' Compare the time-variant transfer function $|\eta_{\rm FZ}(f, \hspace{0.05cm} t)|$ in the figure below right with the corresponding graphic for [[Tasks:Task_2.4:_2D-Transfer Function| Task 2.4]]: *The respective amount functions shown differ significantly, although $|\eta_{\rm VZ}(\tau, t)|$ is the same in both cases. *In task 2.4, a cosine was implicitly assumed for $\eta_{\rm VZ}(\tau = 1 \ {\rm µ s}, t)$, here a minus–cosine function. *The (not explicitly) specified delay–Doppler function for task 2.4 was $$\eta_{\rm VD}(\tau, f_{\rm D}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2} \cdot \delta (\dew) \cdot \delta (f_{\rm D} - 100\,{\rm Hz})+$ '"`UNIQ-MathJax40-QINU`"'\hspace{2cm}+\hspace{0.22cm} \frac{1}{2} \cdot \delta (\dew- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} + 50\,{\rm Hz}) \hspace{0.05cm}.$$ *Comparison with the equation on the [[Tasks:2.5_Scatter-Function|Specifications]] shows that only the signs of the Diracs have changed at $\tau = 1 \ \rm µ s$.