Difference between revisions of "Aufgaben:Exercise 1.1: Dual Slope Loss Model"
Line 5: | Line 5: | ||
To simulate path loss in an urban environment, the asymptotic dual-slope model is often used, which is shown as a red curve in the diagram. This simple model is characterized by two linear sections separated by the so-called breakpoint (BP): | To simulate path loss in an urban environment, the asymptotic dual-slope model is often used, which is shown as a red curve in the diagram. This simple model is characterized by two linear sections separated by the so-called breakpoint (BP): | ||
* For d≤dBP and the exponent γ0 we have: | * For d≤dBP and the exponent γ0 we have: | ||
− | :$$ | + | :$$L_{\rm P}(d) = L_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} ({d}/{d_0})\hspace{0.05cm}.$$ |
* For d>dBP we must apply the path loss exponent γ1 where γ1>γ0: | * For d>dBP we must apply the path loss exponent γ1 where γ1>γ0: | ||
− | :$$ | + | :$$L_{\rm P}(d) = L_{\rm BP} + \gamma_1 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} ({d}/{d_{\rm BP}})\hspace{0.05cm}.$$ |
In these equations, the variables are: | In these equations, the variables are: | ||
− | * $ | + | * $L_0 is the path loss (in dB) at d_0$ (normalization distance). |
− | * $ | + | * $L_{\rm BP} is the path loss (in dB) at d=d_{\rm BP}$ ("Breakpoint"). |
The graph applies to the model parameters | The graph applies to the model parameters | ||
:$$d_0 = 1\,{\rm m}\hspace{0.05cm},\hspace{0.2cm}d_{\rm BP} = 100\,{\rm m}\hspace{0.05cm},\hspace{0.2cm} | :$$d_0 = 1\,{\rm m}\hspace{0.05cm},\hspace{0.2cm}d_{\rm BP} = 100\,{\rm m}\hspace{0.05cm},\hspace{0.2cm} | ||
− | + | L_0 = 10\,{\rm dB}\hspace{0.05cm},\hspace{0.2cm}\gamma_0 = 2 \hspace{0.05cm},\hspace{0.2cm}\gamma_1 = 4 \hspace{0.3cm} | |
\Rightarrow \hspace{0.3cm} | \Rightarrow \hspace{0.3cm} | ||
− | + | L_{\rm BP} = 50\,{\rm dB}\hspace{0.05cm}.$$ | |
In the questions, this piece-wise defined profile is called A. | In the questions, this piece-wise defined profile is called A. | ||
The second curve is the profile B given by the following equation: | The second curve is the profile B given by the following equation: | ||
− | :$$ | + | :$$L_{\rm P}(d) = L_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right ) |
+ (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )\hspace{0.05cm}.$$ | + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )\hspace{0.05cm}.$$ | ||
With this dual model, the entire distance course can be written in closed form, and the received power depends on the distance d according to the following equation: | With this dual model, the entire distance course can be written in closed form, and the received power depends on the distance d according to the following equation: | ||
− | :$$P_{\rm | + | :$$P_{\rm t}(d) = \frac{P_{\rm t} \cdot G_{\rm t} \cdot G_{\rm r} /L_{\rm tot}}{L_{\rm P}(d)} |
− | \hspace{0.05cm},\hspace{0.2cm} | + | \hspace{0.05cm},\hspace{0.2cm}L_{\rm P}(d) = 10^{L_{\rm P}(d)/10} |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | Here, all parameters are in natural units (not in dB). The transmit power is assumed to be $P_{\rm | + | Here, all parameters are in natural units (not in dB). The transmit power is assumed to be $P_{\rm t} = 5 \ \rm W$ . The other quantities have the following meanings and values: |
− | * $10 \cdot \lg \ G_{\rm | + | * $10 \cdot \lg \ G_{\rm t} = 17 \ \rm dB$ (gain of the transmit antenna), |
− | * $10 \cdot \lg \ G_{\rm | + | * $10 \cdot \lg \ G_{\rm r} = -3 \ \ \rm dB$ (gain of receiving antenna – so actually a loss), |
− | * $10 \cdot \lg \ | + | * $10 \cdot \lg \ L_{\rm tot} = 4 \ \ \rm dB$ (loss through feeds). |
Line 45: | Line 45: | ||
*This task belongs to the chapter [[Mobile_Kommunikation/Distanzabh%C3%A4ngige_D%C3%A4mpfung_und_Abschattung_|Distanzabhängige Dämpfung und Abschattung]]. | *This task belongs to the chapter [[Mobile_Kommunikation/Distanzabh%C3%A4ngige_D%C3%A4mpfung_und_Abschattung_|Distanzabhängige Dämpfung und Abschattung]]. | ||
*If the profile B were | *If the profile B were | ||
− | :$$ | + | :$$L_{\rm P}(d) = L_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} \left ( {d}/{d_0} \right ) |
+ (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right )$$ | + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right )$$ | ||
:then profile A and profile B for d ≥ d_{\rm BP} would be identical. | :then profile A and profile B for d ≥ d_{\rm BP} would be identical. | ||
*In this case, however, profile B would be above profile A for (d < d_{\rm BP}) , suggesting clearly too good conditions. | *In this case, however, profile B would be above profile A for (d < d_{\rm BP}) , suggesting clearly too good conditions. | ||
*For example, d=d0=1 m with the given numerical values gives a result that is 40 dB too good: | *For example, d=d0=1 m with the given numerical values gives a result that is 40 dB too good: | ||
− | :$$ | + | :$$L_{\rm P}(d) = L_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right ) =10\,{\rm dB} + 2 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({1}/{100} \right ) |
= -30\,{\rm dB} \hspace{0.05cm}. $$ | = -30\,{\rm dB} \hspace{0.05cm}. $$ | ||
Line 61: | Line 61: | ||
{How large is the path loss (in dB) after d=100 m according to profile A? | {How large is the path loss (in dB) after d=100 m according to profile A? | ||
|type="{}"} | |type="{}"} | ||
− | $ | + | $L_{\rm P}(d = 100 \ \rm m) \ = \ { 50 3% }\ \rm dB$ |
{How large is the path loss (in dB) after d=100 m according to profile B? | {How large is the path loss (in dB) after d=100 m according to profile B? | ||
|type="{}"} | |type="{}"} | ||
− | $ | + | $L_{\rm P}(d = 100 \ \rm m) \ = \ { 56 3% }\ \rm dB$ |
{What is the receive power after 100 m with both profiles? | {What is the receive power after 100 m with both profiles? | ||
|type="{}"} | |type="{}"} | ||
− | Profile $\text{A:} \hspace{0.2cm} P_{\rm | + | Profile $\text{A:} \hspace{0.2cm} P_{\rm r}(d = 100 \ \rm m) \ = \ { 0.5 3% }\ \ \rm mW$ |
− | Profile $\text{B:} \hspace{0.2cm} P_{\rm | + | Profile $\text{B:} \hspace{0.2cm} P_{\rm r}(d = 100 \ \rm m) \ = \ { 0.125 3% }\ \ \rm mW$ |
− | {How big is the deviation $ | + | {How big is the deviation $ΔL_{\rm P} between profile \rm A and \rm B at d = 50 \ \rm m$? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $ΔL_{\rm P}(d = 50 \ \rm m) \ = \ { 3.5 3% }\ \rm dB$ |
− | {How big is the deviation $ | + | {How big is the deviation $ΔL_{\rm P} between profile \rm A and \rm B at d = 200 \ \rm m$? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $ΔL_{\rm P}(d = 200 \ \rm m)\ = \ { 3.5 3% }\ \rm dB$ |
</quiz> | </quiz> | ||
Line 84: | Line 84: | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
'''(1)''' You can see directly from the graphic that the profile (A) with the two linear sections at the breakpoint (d=100 m) gives the following result: | '''(1)''' You can see directly from the graphic that the profile (A) with the two linear sections at the breakpoint (d=100 m) gives the following result: | ||
− | :$$ | + | :$$L_{\rm P}(d = 100\,{\rm m})\hspace{0.15cm} \underline{= 50\,{\rm dB}} \hspace{0.05cm}.$$ |
− | '''(2)''' With the profile (B) on the other hand, using $ | + | '''(2)''' With the profile (B) on the other hand, using $L_0 = 10 \ \rm dB, \gamma_0 = 2 and \gamma_1 = 4$: |
− | :$$ | + | :$$L_{\rm P}(d = 100\,{\rm m}) = 10\,{\rm dB} + 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(100)+ 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(2) |
\hspace{0.15cm} \underline{\approx 56\,{\rm dB}} \hspace{0.05cm}.$$ | \hspace{0.15cm} \underline{\approx 56\,{\rm dB}} \hspace{0.05cm}.$$ | ||
Line 95: | Line 95: | ||
'''(3)''' The antenna gains from the transmitter (+17 dB) and receiver (−3 dB) and the internal losses of the base station (+4 dB) can be combined to | '''(3)''' The antenna gains from the transmitter (+17 dB) and receiver (−3 dB) and the internal losses of the base station (+4 dB) can be combined to | ||
− | :$$10 \cdot {\rm lg}\hspace{0.1cm} G = 10 \cdot {\rm lg}\hspace{0.1cm} G_{\rm S} + 10 \cdot {\rm lg} \hspace{0.1cm} G_{\rm E} - 10 \cdot {\rm lg}\hspace{0.1cm} | + | :$$10 \cdot {\rm lg}\hspace{0.1cm} G = 10 \cdot {\rm lg}\hspace{0.1cm} G_{\rm S} + 10 \cdot {\rm lg} \hspace{0.1cm} G_{\rm E} - 10 \cdot {\rm lg}\hspace{0.1cm} L_{\rm tot} = 17\,{\rm dB} -3\,{\rm dB} - 4\,{\rm dB} = 10\,{\rm dB} |
\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {G = 10} | \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {G = 10} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
*For the profile (A) the following path loss occurred: | *For the profile (A) the following path loss occurred: | ||
− | :$$ | + | :$$L_{\rm P}(d = 100\,{\rm m})\hspace{0.05cm} {= 50\,{\rm dB}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_{\rm P} = 10^5 \hspace{0.05cm}.$$ |
:This gives you for the received power after d=100 m: | :This gives you for the received power after d=100 m: | ||
Line 111: | Line 111: | ||
'''(4)''' Below the breakpoint (d<100 m), the deviation is determined by the last summand of profile (B): | '''(4)''' Below the breakpoint (d<100 m), the deviation is determined by the last summand of profile (B): | ||
− | :$${\rm \Delta} | + | :$${\rm \Delta}L_{\rm P}(d = 50\,{\rm m}) = (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )= (4-2) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (1.5)\hspace{0.15cm} |
\underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.$$ | \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.$$ | ||
− | '''(5)''' Here the profile (A) with $ | + | '''(5)''' Here the profile (A) with $L_{\rm BP} = 50 \ \rm dB$ gives: |
− | :$$ | + | :$$L_{\rm P}(d = 200\,{\rm m}) = 50\,{\rm dB} + 4 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (2)\hspace{0.15cm} |
{\approx 62\,{\rm dB}} \hspace{0.05cm}.$$ | {\approx 62\,{\rm dB}} \hspace{0.05cm}.$$ | ||
*On the other hand, the profile (B) leads to the result: | *On the other hand, the profile (B) leads to the result: | ||
− | :$$ | + | :$$L_{\rm P}(d = 200\,{\rm m}) = 50\,{\rm dB} + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (200) |
+ 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (3) = 10\,{\rm dB} + 46\,{\rm dB} + 9.5\,{\rm dB} | + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (3) = 10\,{\rm dB} + 46\,{\rm dB} + 9.5\,{\rm dB} | ||
\hspace{0.15cm} {\approx 65.5\,{\rm dB}}$$ | \hspace{0.15cm} {\approx 65.5\,{\rm dB}}$$ | ||
− | :$$\Rightarrow \hspace{0.3cm} {\rm \Delta} | + | :$$\Rightarrow \hspace{0.3cm} {\rm \Delta}L_{\rm P}(d = 200\,{\rm m}) = 65.5\,{\rm dB} - 62\,{\rm dB}\hspace{0.15cm} |
\underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.$$ | \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.$$ | ||
− | *You can see that $\Delta | + | *You can see that $\Delta L_{\rm P} is almost symmetrical to d = d_{\rm BP} if you plot the distance d$ logarithmically as in the given graph. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Revision as of 12:23, 27 June 2020
To simulate path loss in an urban environment, the asymptotic dual-slope model is often used, which is shown as a red curve in the diagram. This simple model is characterized by two linear sections separated by the so-called breakpoint (BP):
- For d≤dBP and the exponent γ0 we have:
- LP(d)=L0+γ0⋅10dB⋅lg(d/d0).
- For d>dBP we must apply the path loss exponent γ1 where γ1>γ0:
- LP(d)=LBP+γ1⋅10dB⋅lg(d/dBP).
In these equations, the variables are:
- L0 is the path loss (in dB) at d0 (normalization distance).
- LBP is the path loss (in dB) at d=dBP ("Breakpoint").
The graph applies to the model parameters
- d0=1m,dBP=100m,L0=10dB,γ0=2,γ1=4⇒LBP=50dB.
In the questions, this piece-wise defined profile is called A.
The second curve is the profile B given by the following equation:
- LP(d)=L0+γ0⋅10dB⋅lg(d/d0)+(γ1−γ0)⋅10dB⋅lg(1+d/dBP).
With this dual model, the entire distance course can be written in closed form, and the received power depends on the distance d according to the following equation:
- Pt(d)=Pt⋅Gt⋅Gr/LtotLP(d),LP(d)=10LP(d)/10.
Here, all parameters are in natural units (not in dB). The transmit power is assumed to be Pt=5 W . The other quantities have the following meanings and values:
- 10⋅lg Gt=17 dB (gain of the transmit antenna),
- 10⋅lg Gr=−3 dB (gain of receiving antenna – so actually a loss),
- 10⋅lg Ltot=4 dB (loss through feeds).
Notes:
- This task belongs to the chapter Distanzabhängige Dämpfung und Abschattung.
- If the profile B were
- LP(d)=L0+γ0⋅10dB⋅lg(d/d0)+(γ1−γ0)⋅10dB⋅lg(d/dBP)
- then profile A and profile B for d≥dBP would be identical.
- In this case, however, profile B would be above profile A for (d<dBP) , suggesting clearly too good conditions.
- For example, d=d0=1 m with the given numerical values gives a result that is 40 dB too good:
- LP(d)=L0+γ0⋅10dB⋅lg(d/d0)+(γ1−γ0)⋅10dB⋅lg(d/dBP)=10dB+2⋅10dB⋅lg(1/100)=−30dB.
Questionnaire
Sample solution
- L_{\rm P}(d = 100\,{\rm m})\hspace{0.15cm} \underline{= 50\,{\rm dB}} \hspace{0.05cm}.
(2) With the profile \rm (B) on the other hand, using L_0 = 10 \ \rm dB, \gamma_0 = 2 and \gamma_1 = 4:
- L_{\rm P}(d = 100\,{\rm m}) = 10\,{\rm dB} + 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(100)+ 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(2) \hspace{0.15cm} \underline{\approx 56\,{\rm dB}} \hspace{0.05cm}.
(3) The antenna gains from the transmitter (+17 \ \rm dB) and receiver (-3 \ \rm dB) and the internal losses of the base station (+4 \ \rm dB) can be combined to
- 10 \cdot {\rm lg}\hspace{0.1cm} G = 10 \cdot {\rm lg}\hspace{0.1cm} G_{\rm S} + 10 \cdot {\rm lg} \hspace{0.1cm} G_{\rm E} - 10 \cdot {\rm lg}\hspace{0.1cm} L_{\rm tot} = 17\,{\rm dB} -3\,{\rm dB} - 4\,{\rm dB} = 10\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {G = 10} \hspace{0.05cm}.
- For the profile \rm (A) the following path loss occurred:
- L_{\rm P}(d = 100\,{\rm m})\hspace{0.05cm} {= 50\,{\rm dB}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_{\rm P} = 10^5 \hspace{0.05cm}.
- This gives you for the received power after d = 100\ \rm m:
- P_{\rm E}(d = 100\,{\rm m}) = \frac{P_{\rm S} \cdot G}{K_{\rm P}} = \frac{5\,{\,} \cdot 10}{10^5}\hspace{0.15cm} \underline{= 0.5\,{\rm mW}} \hspace{0.05cm}.
- For profile \rm (B) the received power is about 4 times smaller:
- P_{\rm E}(d = 100\,{\rm m}) = \frac{5\,{\rm W} \cdot 10}{10^{5.6}}\approx \frac{5\,{\rm W} \cdot 10}{4 \cdot 10^{5}}\hspace{0.15cm} \underline{= 0.125\,{\rm mW}} \hspace{0.05cm}.
(4) Below the breakpoint (d < 100 \ \rm m), the deviation is determined by the last summand of profile \rm (B):
- {\rm \Delta}L_{\rm P}(d = 50\,{\rm m}) = (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )= (4-2) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (1.5)\hspace{0.15cm} \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.
(5) Here the profile \rm (A) with L_{\rm BP} = 50 \ \rm dB gives:
- L_{\rm P}(d = 200\,{\rm m}) = 50\,{\rm dB} + 4 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (2)\hspace{0.15cm} {\approx 62\,{\rm dB}} \hspace{0.05cm}.
- On the other hand, the profile \rm (B) leads to the result:
- L_{\rm P}(d = 200\,{\rm m}) = 50\,{\rm dB} + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (200) + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (3) = 10\,{\rm dB} + 46\,{\rm dB} + 9.5\,{\rm dB} \hspace{0.15cm} {\approx 65.5\,{\rm dB}}
- \Rightarrow \hspace{0.3cm} {\rm \Delta}L_{\rm P}(d = 200\,{\rm m}) = 65.5\,{\rm dB} - 62\,{\rm dB}\hspace{0.15cm} \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.
- You can see that \Delta L_{\rm P} is almost symmetrical to d = d_{\rm BP} if you plot the distance d logarithmically as in the given graph.