Difference between revisions of "Aufgaben:Exercise 3.2: GSM Data Rates"
Line 6: | Line 6: | ||
In this task, the data transmission with GSM is considered. However, since this system was mainly specified for voice transmission, we usually use the duration $T_{\rm R} = 20 \ \rm ms$ of a voice frame as a temporal reference in the following calculations. The input data rate is $R_{1} = 9.6 \ \rm kbit/s$. The number of input bits in each $T_{\rm R}$ frame is $N_{1}$. All parameters labelled "???" in the graphic should be calculated in the task. | In this task, the data transmission with GSM is considered. However, since this system was mainly specified for voice transmission, we usually use the duration $T_{\rm R} = 20 \ \rm ms$ of a voice frame as a temporal reference in the following calculations. The input data rate is $R_{1} = 9.6 \ \rm kbit/s$. The number of input bits in each $T_{\rm R}$ frame is $N_{1}$. All parameters labelled "???" in the graphic should be calculated in the task. | ||
− | + | The first blocks are shown in the transmission chain shown: | |
− | + | *the outer coder (block code including four tail bits) with $N_{2} = 244 \ \rm Bit$ per frame $(T_{\rm R} = 20 \ \ \rm ms)$ ⇒ Rate $R_{2}$ is to be determined, | |
− | The first blocks | ||
− | *the outer coder (block code including four tail bits) with $N_{2} = 244 \ \rm Bit$ per frame $(T_{\rm R} = 20 | ||
*the convolutional coder with the code rate $1/2$, and subsequent puncturing $($waiver of $N_{\rm P} \ \rm bit)$ ⇒ Rate $R_{3} = 22.8 \ \rm kbit/s$, | *the convolutional coder with the code rate $1/2$, and subsequent puncturing $($waiver of $N_{\rm P} \ \rm bit)$ ⇒ Rate $R_{3} = 22.8 \ \rm kbit/s$, | ||
*Interleaving and encryption, both rate-neutral At the output of this block the rate $R_4$ occurs. | *Interleaving and encryption, both rate-neutral At the output of this block the rate $R_4$ occurs. | ||
− | |||
− | |||
Line 22: | Line 18: | ||
− | The total gross data rate $R_{\rm ges} = 270,833 \ \rm kbit/s$ (for eight users) is assumed to be known. | + | The total gross digital data rate $R_{\rm ges} = 270,833 \ \rm kbit/s$ (for eight users) is assumed to be known. |
Line 37: | Line 33: | ||
*$N_{1}, N_{2}, N_{3}$ and $N_{4}$ denote the respective number of bits at the corresponding points of the above block diagram within a time frame of duration $T_{\rm R} = 20 \ \rm ms$. | *$N_{1}, N_{2}, N_{3}$ and $N_{4}$ denote the respective number of bits at the corresponding points of the above block diagram within a time frame of duration $T_{\rm R} = 20 \ \rm ms$. | ||
*$N_{\rm ges} = 156.25$ is the number of bits after burst formation, related to the duration $T_{\rm Z}$ of a TDMA time slot. Of which $N_{\rm Info} = 114$ are information bits including channel coding. | *$N_{\rm ges} = 156.25$ is the number of bits after burst formation, related to the duration $T_{\rm Z}$ of a TDMA time slot. Of which $N_{\rm Info} = 114$ are information bits including channel coding. | ||
− | |||
− | |||
− | |||
Line 67: | Line 60: | ||
− | {What is the data rate after | + | {What is the data rate after Interleaver and encryption? |
|type="{}"} | |type="{}"} | ||
$R_{4} \ = \ $ { 22.8 3% } $\ \ \rm kbit/s$ | $R_{4} \ = \ $ { 22.8 3% } $\ \ \rm kbit/s$ | ||
Line 81: | Line 74: | ||
$R_{6} \ = \ $ { 33,854 3% } $\ \ \rm kbit/s$ | $R_{6} \ = \ $ { 33,854 3% } $\ \ \rm kbit/s$ | ||
− | {What gross data rate would | + | {What gross data rate would be without signaling bits? |
|type="{}"} | |type="{}"} | ||
$R_{5} \ = \ $ { 31.25 3% } $\ \ \rm kbit/s$ | $R_{5} \ = \ $ { 31.25 3% } $\ \ \rm kbit/s$ | ||
Line 88: | Line 81: | ||
=== sample solution=== | === sample solution=== | ||
− | + | {{ML-Kopf}} | |
− | '''(1)''' | + | '''(1)''' Es gilt $N_{1} = R_{1} \cdot T_{\rm R} = 9.6 {\ \rm kbit/s} \cdot 20 {\ \rm ms} \hspace{0.15cm} \underline{= 192 \ \rm Bit}$. |
− | '''(2)''' | + | '''(2)''' Analog zur Teilaufgabe '''(1)''' gilt: |
− | $$R_2= \frac{N_2}{T_{\rm R | + | :$$R_2= \frac{N_2}{T_{\rm R}} = \frac{244\,{\rm Bit}}{20\,{\rm ms}}\hspace{0.15cm} \underline { = 12.2\,{\rm kbit/s}}\hspace{0.05cm}.$$ |
− | + | Beachten Sie bitte: Bei einer redundanzfreien Binärquelle (aber nur bei dieser) besteht kein Unterschied zwischen „$\rm Bit$” und „$\rm bit$”. | |
− | '''(3)''' | + | '''(3)''' Der Faltungscoder der Rate $1/2$ allein würde aus seinen $N_{2} = 244$ Eingangsbits genau $N_{3}\hspace{0.01cm}' \hspace{0.15cm}\underline{= 488}$ Ausgangsbits pro Rahmen generieren. |
− | '''(4)''' | + | '''(4)''' Aus der angegebenen Datenrate $R_{3} = 22.8 \ \rm kbit/s$ folgt dagegen $N_{3} \hspace{0.15cm}\underline{= 456}$. |
− | * | + | *Das bedeutet, dass von den $N_{3}' = 488 \ \rm Bit$ durch die Punktierung $N_{\rm P} = 32 \ \rm Bit$ entfernt werden. |
− | '''(5)''' | + | '''(5)''' Sowohl das Interleaving als auch die Verschlüsselung erfolgt sozusagen „datenneutral”. Damit gilt: |
− | :$$R_{4} = R_{3} \hspace{0.15cm}\underline{= 22.8 \ {\rm kbit/s}} | + | :$$R_{4} = R_{3} \hspace{0.15cm}\underline{= 22.8 \ {\rm kbit/s}} \Rightarrow N_{4} = N_{3} = 456.$$ |
− | '''(6)''' | + | '''(6)''' Für die Bitdauer gilt $T_{\rm B} = 1/R_{7} = 1/(0.270833 {\ \rm Mbit/s}) \approx 3.69 \ \rm µ s$. |
− | * | + | *In jedem Zeitschlitz der Dauer $T_{\rm Z}$ wird ein Burst – bestehend aus $156.25 \ \rm Bit$ – übertragen. |
− | * | + | *Daraus ergibt sich $T_{\rm Z} \hspace{0.15cm}\underline{= 576.9 \ \rm µ s}$. |
− | '''(7)''' GSM | + | '''(7)''' Bei GSM gibt es acht Zeitschlitze, wobei jedem Nutzer periodisch ein Zeitschlitz zugewiesen wird. |
− | * | + | *Damit beträgt die Bruttodatenrate für jeden Nutzer $R_{6} = R_{7}/8 \hspace{0.15cm}\underline{ \approx 33.854 \ \rm kbit/s}$. |
− | '''(8)''' | + | '''(8)''' Berücksichtigt man, dass beim ''Normal Burst'' der Anteil der Nutzdaten (inkl. Kanalcodierung) $114/156.25$ beträgt, so wäre die Rate ohne Berücksichtigung der zugefügten Signalisierungsbits: |
− | :$$R_5 = \frac{n_{\rm ges} }{\rm Info} \cdot R_4 = \frac{156.25}{114} \cdot 22.8\,{\rm kbit/s}\hspace{0.15cm} \underline { = 31 | + | :$$R_5 = \frac{n_{\rm ges} }{n_{\rm Info} } \cdot R_4 = \frac{156.25 }{114} \cdot 22.8\,{\rm kbit/s}\hspace{0.15cm} \underline { = 31.250\,{\rm kbit/s}}\hspace{0.05cm}.$$ |
− | * | + | *Zum gleichen Ergebnis kommt man, wenn man berücksichtigt, dass bei GSM jeder 13. Rahmen für ''Common Control'' (Signalisierungs–Info) reserviert ist: |
− | :$$R_5 = \frac{12}{13} \cdot 33 | + | :$$R_5 = \frac{12 }{13 } \cdot 33.854\,{\rm kbit/s} ={ 31.250\,{\rm kbit/s}}\hspace{0.05cm}.$$ |
− | * | + | *Damit beträgt der prozentuale Anteil der Signalisierungsbits: |
− | $$\alpha_{\rm SB} = \frac{33.854 - 31.250}{33.854} { \approx 7.7\%}\hspace{0.05cm}.$$ | + | :$$\alpha_{\rm SB} = \frac{33.854 - 31.250}{33.854 } { \approx 7.7\%}\hspace{0.05cm}.$$ |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Line 129: | Line 122: | ||
− | Category:Exercises for Mobile Communications|^3.2 Similarities between GSM and UMTS | + | [[Category:Exercises for Mobile Communications|^3.2 Similarities between GSM and UMTS |
^]] | ^]] |
Revision as of 13:10, 25 June 2020
In this task, the data transmission with GSM is considered. However, since this system was mainly specified for voice transmission, we usually use the duration $T_{\rm R} = 20 \ \rm ms$ of a voice frame as a temporal reference in the following calculations. The input data rate is $R_{1} = 9.6 \ \rm kbit/s$. The number of input bits in each $T_{\rm R}$ frame is $N_{1}$. All parameters labelled "???" in the graphic should be calculated in the task.
The first blocks are shown in the transmission chain shown:
- the outer coder (block code including four tail bits) with $N_{2} = 244 \ \rm Bit$ per frame $(T_{\rm R} = 20 \ \ \rm ms)$ ⇒ Rate $R_{2}$ is to be determined,
- the convolutional coder with the code rate $1/2$, and subsequent puncturing $($waiver of $N_{\rm P} \ \rm bit)$ ⇒ Rate $R_{3} = 22.8 \ \rm kbit/s$,
- Interleaving and encryption, both rate-neutral At the output of this block the rate $R_4$ occurs.
The further signal processing is basically as follows:
- Each $114$ (coded, scrambled, encrypted) data bits are combined together with $34$ control bits (for training sequence, tail bits, guard period) and a pause $($Duration: $8.25 \ \ \rm Bit)$ to a so called Normal \ Burst . The rate at the output is called $R_{5}$ .
- Additionally, further bursts (Frequency Correction Burst, Synchronisation Burst, Dummy Burst, Access Bursts) are added for signalling. The rate after this block is $R_{6}$.
- Finally the TDMA multiplexing equipment follows, so that the total gross data rate of the GSM is $R_{\rm ges} = R_{7}$ .
The total gross digital data rate $R_{\rm ges} = 270,833 \ \rm kbit/s$ (for eight users) is assumed to be known.
Notes:
- The task belongs to the chapter Gemeinsamkeiten von GSM und UMTS.
- The graphic above summarizes the present description and defines the data rates used.
- All rates are given in "$ \rm kbit/s$".
- $N_{1}, N_{2}, N_{3}$ and $N_{4}$ denote the respective number of bits at the corresponding points of the above block diagram within a time frame of duration $T_{\rm R} = 20 \ \rm ms$.
- $N_{\rm ges} = 156.25$ is the number of bits after burst formation, related to the duration $T_{\rm Z}$ of a TDMA time slot. Of which $N_{\rm Info} = 114$ are information bits including channel coding.
Questionnaire
sample solution
(1) Es gilt $N_{1} = R_{1} \cdot T_{\rm R} = 9.6 {\ \rm kbit/s} \cdot 20 {\ \rm ms} \hspace{0.15cm} \underline{= 192 \ \rm Bit}$.
(2) Analog zur Teilaufgabe (1) gilt:
- $$R_2= \frac{N_2}{T_{\rm R}} = \frac{244\,{\rm Bit}}{20\,{\rm ms}}\hspace{0.15cm} \underline { = 12.2\,{\rm kbit/s}}\hspace{0.05cm}.$$
Beachten Sie bitte: Bei einer redundanzfreien Binärquelle (aber nur bei dieser) besteht kein Unterschied zwischen „$\rm Bit$” und „$\rm bit$”.
(3) Der Faltungscoder der Rate $1/2$ allein würde aus seinen $N_{2} = 244$ Eingangsbits genau $N_{3}\hspace{0.01cm}' \hspace{0.15cm}\underline{= 488}$ Ausgangsbits pro Rahmen generieren.
(4) Aus der angegebenen Datenrate $R_{3} = 22.8 \ \rm kbit/s$ folgt dagegen $N_{3} \hspace{0.15cm}\underline{= 456}$.
- Das bedeutet, dass von den $N_{3}' = 488 \ \rm Bit$ durch die Punktierung $N_{\rm P} = 32 \ \rm Bit$ entfernt werden.
(5) Sowohl das Interleaving als auch die Verschlüsselung erfolgt sozusagen „datenneutral”. Damit gilt:
- $$R_{4} = R_{3} \hspace{0.15cm}\underline{= 22.8 \ {\rm kbit/s}} \Rightarrow N_{4} = N_{3} = 456.$$
(6) Für die Bitdauer gilt $T_{\rm B} = 1/R_{7} = 1/(0.270833 {\ \rm Mbit/s}) \approx 3.69 \ \rm µ s$.
- In jedem Zeitschlitz der Dauer $T_{\rm Z}$ wird ein Burst – bestehend aus $156.25 \ \rm Bit$ – übertragen.
- Daraus ergibt sich $T_{\rm Z} \hspace{0.15cm}\underline{= 576.9 \ \rm µ s}$.
(7) Bei GSM gibt es acht Zeitschlitze, wobei jedem Nutzer periodisch ein Zeitschlitz zugewiesen wird.
- Damit beträgt die Bruttodatenrate für jeden Nutzer $R_{6} = R_{7}/8 \hspace{0.15cm}\underline{ \approx 33.854 \ \rm kbit/s}$.
(8) Berücksichtigt man, dass beim Normal Burst der Anteil der Nutzdaten (inkl. Kanalcodierung) $114/156.25$ beträgt, so wäre die Rate ohne Berücksichtigung der zugefügten Signalisierungsbits:
- $$R_5 = \frac{n_{\rm ges} }{n_{\rm Info} } \cdot R_4 = \frac{156.25 }{114} \cdot 22.8\,{\rm kbit/s}\hspace{0.15cm} \underline { = 31.250\,{\rm kbit/s}}\hspace{0.05cm}.$$
- Zum gleichen Ergebnis kommt man, wenn man berücksichtigt, dass bei GSM jeder 13. Rahmen für Common Control (Signalisierungs–Info) reserviert ist:
- $$R_5 = \frac{12 }{13 } \cdot 33.854\,{\rm kbit/s} ={ 31.250\,{\rm kbit/s}}\hspace{0.05cm}.$$
- Damit beträgt der prozentuale Anteil der Signalisierungsbits:
- $$\alpha_{\rm SB} = \frac{33.854 - 31.250}{33.854 } { \approx 7.7\%}\hspace{0.05cm}.$$