Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.2: GSM Data Rates"

From LNTwww
Line 13: Line 13:
  
 
The further signal processing is basically as follows:
 
The further signal processing is basically as follows:
*Each  114  (coded, scrambled, encrypted) data bits are combined together with  34  control bits (for training sequence, tail bits, guard period) and a pause (Duration:   8.25  Bit)  to a so called  ''Normal \ Burst'' . The rate at the output is called  R5 .
+
*Each  114  (coded, scrambled, encrypted) data bits are combined together with  34  control bits (for training sequence, tail bits, guard period) and a pause (Duration:   8.25  Bit)  to a so called  ''Normal \ Burst''  . The rate at the output is called  R5 .
 
*Additionally, further bursts (''Frequency Correction Burst, Synchronisation Burst, Dummy Burst, Access Bursts'') are added for signalling. The rate after this block is  R6.
 
*Additionally, further bursts (''Frequency Correction Burst, Synchronisation Burst, Dummy Burst, Access Bursts'') are added for signalling. The rate after this block is  R6.
 
*Finally the TDMA multiplexing equipment follows, so that the total gross data rate of the GSM is  Rtot=R7 .
 
*Finally the TDMA multiplexing equipment follows, so that the total gross data rate of the GSM is  Rtot=R7 .

Revision as of 21:17, 25 June 2020

Block diagram of GSM

In this task, the data transmission with GSM is considered. However, since this system was mainly specified for voice transmission, we usually use the duration  TR=20 ms  of a voice frame as a temporal reference in the following calculations. The input data rate is  R1=9.6 kbit/s. The number of input bits in each TR frame is  N1. All parameters labelled "???" in the graphic should be calculated in the task.

The first blocks are shown in the transmission chain shown:

  • the outer coder (block code including four tail bits) with  N2=244 Bit  per frame  (TR=20  ms)   ⇒   Rate  R2  is to be determined,
  • the convolutional coder with the code rate  1/2, and subsequent puncturing (waiver of  NP bit)    ⇒   Rate R3=22.8 kbit/s,
  • Interleaving and encryption, both rate-neutral At the output of this block the rate  R4  occurs.


The further signal processing is basically as follows:

  • Each  114  (coded, scrambled, encrypted) data bits are combined together with  34  control bits (for training sequence, tail bits, guard period) and a pause (Duration:   8.25  Bit)  to a so called  Normal \ Burst  . The rate at the output is called  R5 .
  • Additionally, further bursts (Frequency Correction Burst, Synchronisation Burst, Dummy Burst, Access Bursts) are added for signalling. The rate after this block is  R6.
  • Finally the TDMA multiplexing equipment follows, so that the total gross data rate of the GSM is  Rtot=R7 .


The total gross digital data rate  Rtot=270,833 kbit/s  (for eight users) is assumed to be known.




Notes:

  • The task belongs to the chapter  Gemeinsamkeiten von GSM und UMTS.
  • The graphic above summarizes the present description and defines the data rates used.
  • All rates are given in "kbit/s".
  • N1,N2,N3  and  N4  denote the respective number of bits at the corresponding points of the above block diagram within a time frame of duration  TR=20 ms.
  • Ntot=156.25  is the number of bits after burst formation, related to the duration  TZ  of a TDMA time slot. Of which  NInfo=114  are information bits including channel coding.


Questionnaire

1

How many bits are provided by the source in each frame?

N1 = 

  Bit

2

What is the data rate after the outer coder?

R2 = 

  kbit/s

3

How many bits would the convolutional coder deliver alone (without dotting)?

N3 = 

  Bit

4

How many bits does the dotted convolutional coder actually emit?

N3 = 

  Bit

5

What is the data rate after Interleaver and encryption?

R4 = 

  kbit/s

6

How long does a time slot last?

TZ = 

\ \ \rm µ s

7

What is the gross data rate for each individual TDMA user?

R_{6} \ = \

\ \ \rm kbit/s

8

What gross data rate would be without signaling bits?

R_{5} \ = \

\ \ \rm kbit/s


Sample Solution

(1)  The following applies N_{1} = R_{1} \cdot T_{\rm R} = 9.6 {\ \rm kbit/s} \cdot 20 {\ \rm ms} \hspace{0.15cm} \underline{= 192 \ \rm Bit}.


(2)  Analogous to subtask (1) applies:

R_2= \frac{N_2}{T_{\rm R}} = \frac{244\,{\rm Bit}}{20\,{\rm ms}}\hspace{0.15cm} \underline { = 12.2\,{\rm kbit/s}}\hspace{0.05cm}.

Please note:   For a redundancy-free binary source (but only on this one), there is no difference between "\rm Bit" and "\rm bit".


(3)  The convolutional encoder of rate 1/2 alone would generate exactly N_{3}\hspace{0.01cm}' \hspace{0.15cm}\underline{= 488} output bits from the input bits N_{2} = 244 .


(4)  In contrast, N_{3} \hspace{0.15cm}\underline{= 456} is followed by the specifed data rate R_{3} = 22.8 \ \rm kbit/s

  • This means that from N_{3}' = 488 \ \rm Bit ,N_{\rm P} = 32 \ \rm Bit can be removed by puncturing.


(5)  Both the interleaving and the encryption are "data neutral" so to speak. Thus the following applies:

R_{4} = R_{3} \hspace{0.15cm}\underline{= 22.8 \ {\rm kbit/s}} \Rightarrow N_{4} = N_{3} = 456.


(6)  The bit duration is T_{\rm B} = 1/R_{7} = 1/(0.270833 {\ \rm Mbit/s}) \approx 3.69 \ \rm µ s.

  • In every time slot T_{\rm Z} a Burst of 156.25 \ \rm Bit – will be transmitted.
  • This makes T_{\rm Z} \hspace{0.15cm}\underline{= 576.9 \ \rm µ s}.


(7)  GSM has eight time slots, whereby each user is periodically assigned a time slot.

  • The gross data rate for each user is R_{6} = R_{7}/8 \hspace{0.15cm}\underline{ \approx 33.854 \ \rm kbit/s}.



(8)  Considering that in the normal burst the portion of user data (including channel coding) is 114/156.25, the rate would be without consideration of the added signaling bits:

R_5 = \frac{n_{\rm tot} }{n_{\rm Info} } \cdot R_4 = \frac{156.25}{114} \cdot 22.8\,{\rm kbit/s}\hspace{0.15cm} \underline { = 31,250\,{\rm kbit/s}}\hspace{0.05cm}.
  • The same result can be obtained if you consider that in GSM every 13th frame is reserved for Common Control (signaling info):
R_5 = \frac{12}{13} \cdot 33,854\,{\rm kbit/s} ={ 31,250\,{\rm kbit/s}}\hspace{0.05cm}.
  • Thus the percentage of signaling bits is
\alpha_{\rm SB} = \frac{33.854 - 31.250}{33.854 } { \approx 7.7\%}\hspace{0.05cm}.