Difference between revisions of "Aufgaben:Exercise 3.5: GMSK Modulation"
Line 4: | Line 4: | ||
[[File:EN_Mob_A_3_5.png|right|frame|Verschiedene Signale bei GMSK-Modulation]] | [[File:EN_Mob_A_3_5.png|right|frame|Verschiedene Signale bei GMSK-Modulation]] | ||
+ | |||
The modulation method used for GSM is ''Gaussian Minimum Shift Keying'', short GMSK. This is a special type of FSK (''Frequency Shift Keying'') with CP-FSK (''Continuous Phase Matching''), where | The modulation method used for GSM is ''Gaussian Minimum Shift Keying'', short GMSK. This is a special type of FSK (''Frequency Shift Keying'') with CP-FSK (''Continuous Phase Matching''), where | ||
*the modulation index has the smallest value that just satisfies the orthogonality condition: h=0.5 ⇒ ''Minimum Shift Keying'', | *the modulation index has the smallest value that just satisfies the orthogonality condition: h=0.5 ⇒ ''Minimum Shift Keying'', | ||
Line 45: | Line 46: | ||
<br clear=all> | <br clear=all> | ||
− | + | ===Questionnaire=== | |
− | |||
− | === | ||
<quiz display=simple> | <quiz display=simple> | ||
Line 80: | Line 79: | ||
</quiz> | </quiz> | ||
− | === | + | ===Musterlösung=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
Line 89: | Line 88: | ||
:Min [fA(t)]=fT−ΔfA=899.932MHz_ | :Min [fA(t)]=fT−ΔfA=899.932MHz_ | ||
is obtained when all amplitude coefficients are negative. In this case qR(t)=qG(t)=−1. | is obtained when all amplitude coefficients are negative. In this case qR(t)=qG(t)=−1. | ||
− | |||
Line 99: | Line 97: | ||
\Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$ | \Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$ | ||
*The numerical evaluation leads to fG≈1.5⋅f3dB. | *The numerical evaluation leads to fG≈1.5⋅f3dB. | ||
− | * | + | *Aus $f_{\rm 3dB} \cdot T = 0.3$ folgt somit fG⋅T≈0.45_. |
+ | |||
+ | |||
+ | |||
− | '''(3)''' | + | '''(3)''' The frequency pulse g(t) results from the convolution of the rectangular function gR(t) with the pulse response hG(t): |
:g(t)=gR(t)⋆hG(t)=2fG⋅∫t+T/2t−T/2e−π⋅(2fG⋅τ)2dτ. | :g(t)=gR(t)⋆hG(t)=2fG⋅∫t+T/2t−T/2e−π⋅(2fG⋅τ)2dτ. | ||
− | * | + | *With the substitution u^{2} = 8π \cdot {f_{G}}^{2} \cdot \tau^{2} and the function \phi (x) you can also write for this: |
:g(t) = \ \frac {1}{\sqrt{2 \pi}} \cdot \int^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = \ \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}. | :g(t) = \ \frac {1}{\sqrt{2 \pi}} \cdot \int^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = \ \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}. | ||
− | * | + | *For the time t = 0 is valid considering \phi (-x) = 1 - \phi (x) and $f_{\rm G} \cdot T = $0.45 |
:g(t = 0) = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= \ 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1.12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}. | :g(t = 0) = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= \ 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1.12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}. | ||
− | '''(4)''' | + | '''(4)''' With a_{3} = +1 the result would be q_{\rm G}(t = 3 T) = 1. Due to the linearity, the following therefore applies: |
:q_{\rm G}(t = 3 T ) = 1 - 2 \cdot g(t = 0)= 1 - 2 \cdot 0.737 \hspace{0.15cm} \underline {= -0.474} \hspace{0.05cm}. | :q_{\rm G}(t = 3 T ) = 1 - 2 \cdot g(t = 0)= 1 - 2 \cdot 0.737 \hspace{0.15cm} \underline {= -0.474} \hspace{0.05cm}. | ||
− | '''(5)''' | + | '''(5)''' With the result of (3) and $f_{\rm G} \cdot T = $0.45 you get |
:g(t = T) = \ \phi(3 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T) \approx \phi(3.36)-\phi(1.12) = 0.999 - 0.868 \hspace{0.15cm} \underline { = 0.131} \hspace{0.05cm}. | :g(t = T) = \ \phi(3 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T) \approx \phi(3.36)-\phi(1.12) = 0.999 - 0.868 \hspace{0.15cm} \underline { = 0.131} \hspace{0.05cm}. | ||
− | * | + | *The pulse value g(t = -T) is exactly the same due to the symmetry of the Gaussian low pass. |
− | '''(6)''' | + | '''(6)''' With alternating sequence, the absolute values |q_{\rm G}(\mu \cdot T)| are all the same for all multiples of the bit duration T for reasons of symmetry. |
− | * | + | *All intermediate values at t \approx \mu \cdot T are smaller. |
− | * | + | * Taking g(t ≥ 2T) \approx 0 into account, each individual pulse value g(0) is reduced by the preceding pulse with g(t = T), and also by the following pulse with g(t = -T). |
− | * | + | *So there will be impulse interference and you get |
:{\rm Max} \hspace{0.12cm}[q_{\rm G}(t)] = g(t = 0) - 2 \cdot g(t = T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}. | :{\rm Max} \hspace{0.12cm}[q_{\rm G}(t)] = g(t = 0) - 2 \cdot g(t = T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}. | ||
Line 135: | Line 136: | ||
− | [[Category: | + | [[Category:Aufgaben zu Mobile Kommunikation|^3.3 Die Charakteristika von GSM^]] |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 09:59, 30 June 2020
The modulation method used for GSM is Gaussian Minimum Shift Keying, short GMSK. This is a special type of FSK (Frequency Shift Keying) with CP-FSK (Continuous Phase Matching), where
- the modulation index has the smallest value that just satisfies the orthogonality condition: h = 0.5 ⇒ Minimum Shift Keying,
- a Gaussian low pass with the impulse response h_{\rm G}(t) is inserted before the FSK modulator, with the aim of saving even more bandwidth.
The graphic illustrates the situation:
- The digital message is represented by the amplitude coefficients a_{\mu} ∈ \{±1\} which are applied to a Dirac pulse. It should be noted that the sequence drawn in is assumed for the subtask (3).
- The symmetrical rectangular pulse with duration T = T_{\rm B} (GSM bit duration) is dimensionless:
- g_{\rm R}(t) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c} {\rm{{\rm{f\ddot{u}r}}}} \\ {\rm{{\rm{f\ddot{u}r}}}} \\ \end{array}\begin{array}{*{5}c} |\hspace{0.05cm} t \hspace{0.05cm}| < T/2 \hspace{0.05cm}, \\ |\hspace{0.05cm} t \hspace{0.05cm}| > T/2 \hspace{0.05cm}. \\ \end{array}
- This results for the rectangular signal
- q_{\rm R} (t) = q_{\rm \delta} (t) \star g_{\rm R}(t) = \sum_{\nu} a_{\nu}\cdot g_{\rm R}(t - \nu \cdot T)\hspace{0.05cm}.
- The Gaussian low pass is given by its frequency response or impulse response:
- H_{\rm G}(f) = {\rm e}^{-\pi\cdot (\frac{f}{2 f_{\rm G}})^2} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} h_{\rm G}(t) = 2 f_{\rm G} \cdot {\rm e}^{-\pi\cdot (2 f_{\rm G}\cdot t)^2}\hspace{0.05cm},
- where the system theoretical cut-off frequency f_{\rm G} is used. In the GSM specification, however, the 3dB cut-off frequency is specified with f_{\rm 3dB} = 0.3/T . From this, f_{\rm G} can be calculated directly - see subtask (2).
- The signal after the gauss low pass is thus
- q_{\rm G} (t) = q_{\rm R} (t) \star h_{\rm G}(t) = \sum_{\nu} a_{\nu}\cdot g(t - \nu \cdot T)\hspace{0.05cm}.
Here g(t) is referred to as frequency pulse. For this one:
- g(t) = q_{\rm R} (t) \star h_{\rm G}(t) \hspace{0.05cm}.
- With the low pass filtered signal q_{\rm G}(t), the carrier frequency f_{\rm T} and the frequency deviation \Delta f_{\rm A} can thus be written for the instantaneous frequency at the output of the FSK modulator::f_{\rm A}(t) = f_{\rm T} + \Delta f_{\rm A} \cdot q_{\rm G} (t)\hspace{0.05cm}.
Notes:
- This exercise belongs to the chapter Die Charakteristika von GSM.
- Reference is also made to the chapter Funkschnittstelle in the book „Beispiele von Nachrichtensystemen”.
- For your calculations use the exemplary values f_{\rm T} = 900 \ \ \rm MHz and \Delta f_{\rm A} = 68 \ \rm kHz.
- Use the Gaussian integral to solve the task (some numerical values are given in the table)
- \phi(x) =\frac {1}{\sqrt{2 \pi}} \cdot \int^{x} _{-\infty} {\rm e}^{-u^2/2}\,{\rm d}u \hspace{0.05cm}.
Questionnaire
Musterlösung
(1) If all amplitude coefficients a_{\mu} are equal to +1, then q_{\rm R}(t) = 1 is a constant. Thus, the Gaussian low pass has no influence and q_{\rm G}(t) = 1 results.
- The maximum frequency is thus
- {\rm Max}\ [f_{\rm A}(t)] = f_{\rm T} + \Delta f_{\rm A} \hspace{0.15cm} \underline {= 900.068\,{\rm MHz}} \hspace{0.05cm}.
- The minimum instantaneous frequency
- {\rm Min}\ [f_{\rm A}(t)] = f_{\rm T} - \Delta f_{\rm A} \hspace{0.15cm} \underline { = 899.932\,{\rm MHz}} \hspace{0.05cm}
is obtained when all amplitude coefficients are negative. In this case q_{\rm R}(t) = q_{\rm G}(t) = -1.
(2) The frequency at which the logarithmic power transfer function is 3 \ \rm dB less than f = 0 is called the 3dB cut-off frequency.
- This can also be expressed as follows:
- \frac {|H(f = f_{\rm 3dB})|}{|H(f = 0)|}= \frac{1}{\sqrt{2}} \hspace{0.05cm}.
- In particular the Gauss low pass because of H(f = 0) = 1:
- H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.
- The numerical evaluation leads to f_{\rm G} \approx 1.5 \cdot f_{\rm 3dB}.
- Aus f_{\rm 3dB} \cdot T = 0.3 folgt somit f_{\rm G} \cdot T \underline{\approx 0.45}.
(3) The frequency pulse {\rm g}(t) results from the convolution of the rectangular function g_{\rm R}(t) with the pulse response h_{\rm G}(t):
- g(t) = g_{\rm R} (t) \star h_{\rm G}(t) = 2 f_{\rm G} \cdot \int^{t + T/2} _{t - T/2} {\rm e}^{-\pi\cdot (2 f_{\rm G}\cdot \tau)^2}\,{\rm d}\tau \hspace{0.05cm}.
- With the substitution u^{2} = 8π \cdot {f_{G}}^{2} \cdot \tau^{2} and the function \phi (x) you can also write for this:
- g(t) = \ \frac {1}{\sqrt{2 \pi}} \cdot \int^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = \ \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}.
- For the time t = 0 is valid considering \phi (-x) = 1 - \phi (x) and f_{\rm G} \cdot T = 0.45
- g(t = 0) = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= \ 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1.12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}.
(4) With a_{3} = +1 the result would be q_{\rm G}(t = 3 T) = 1. Due to the linearity, the following therefore applies:
- q_{\rm G}(t = 3 T ) = 1 - 2 \cdot g(t = 0)= 1 - 2 \cdot 0.737 \hspace{0.15cm} \underline {= -0.474} \hspace{0.05cm}.
(5) With the result of (3) and f_{\rm G} \cdot T = 0.45 you get
- g(t = T) = \ \phi(3 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T) \approx \phi(3.36)-\phi(1.12) = 0.999 - 0.868 \hspace{0.15cm} \underline { = 0.131} \hspace{0.05cm}.
- The pulse value g(t = -T) is exactly the same due to the symmetry of the Gaussian low pass.
(6) With alternating sequence, the absolute values |q_{\rm G}(\mu \cdot T)| are all the same for all multiples of the bit duration T for reasons of symmetry.
- All intermediate values at t \approx \mu \cdot T are smaller.
- Taking g(t ≥ 2T) \approx 0 into account, each individual pulse value g(0) is reduced by the preceding pulse with g(t = T), and also by the following pulse with g(t = -T).
- So there will be impulse interference and you get
- {\rm Max} \hspace{0.12cm}[q_{\rm G}(t)] = g(t = 0) - 2 \cdot g(t = T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}.