Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.5: GMSK Modulation"

From LNTwww
Line 4: Line 4:
  
 
[[File:EN_Mob_A_3_5.png|right|frame|Verschiedene Signale bei GMSK-Modulation]]
 
[[File:EN_Mob_A_3_5.png|right|frame|Verschiedene Signale bei GMSK-Modulation]]
 +
 
The modulation method used for GSM is  ''Gaussian Minimum Shift Keying'', short GMSK. This is a special type of FSK (''Frequency Shift Keying'') with CP-FSK (''Continuous Phase Matching''), where
 
The modulation method used for GSM is  ''Gaussian Minimum Shift Keying'', short GMSK. This is a special type of FSK (''Frequency Shift Keying'') with CP-FSK (''Continuous Phase Matching''), where
 
*the modulation index has the smallest value that just satisfies the orthogonality condition:   h=0.5   ⇒   ''Minimum Shift Keying'',
 
*the modulation index has the smallest value that just satisfies the orthogonality condition:   h=0.5   ⇒   ''Minimum Shift Keying'',
Line 45: Line 46:
 
<br clear=all>
 
<br clear=all>
  
 
+
===Questionnaire===
 
 
===Fragebogen===
 
  
 
<quiz display=simple>
 
<quiz display=simple>
Line 80: Line 79:
 
</quiz>
 
</quiz>
  
===Sample solution===
+
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
Line 89: Line 88:
 
:Min [fA(t)]=fTΔfA=899.932MHz_
 
:Min [fA(t)]=fTΔfA=899.932MHz_
 
is obtained when all amplitude coefficients are negative. In this case qR(t)=qG(t)=1.
 
is obtained when all amplitude coefficients are negative. In this case qR(t)=qG(t)=1.
 
  
  
Line 99: Line 97:
 
\Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$
 
*The numerical evaluation leads to  fG1.5f3dB.  
 
*The numerical evaluation leads to  fG1.5f3dB.  
*{\f_{\rm 3dB} \cdot T = 0.3$ is followed by fGT0.45_.
+
*Aus $f_{\rm 3dB} \cdot T = 0.3$ folgt somit fGT0.45_.
 +
 
 +
 
 +
 
  
  
'''(3)'''&nbsp; Der gesuchte Frequenzimpuls g(t) ergibt sich aus der Faltung von Rechteckfunktion gR(t) mit der Impulsantwort hG(t):
+
'''(3)'''&nbsp; The frequency pulse g(t) results from the convolution of the rectangular function gR(t) with the pulse response hG(t):
 
:g(t)=gR(t)hG(t)=2fGt+T/2tT/2eπ(2fGτ)2dτ.
 
:g(t)=gR(t)hG(t)=2fGt+T/2tT/2eπ(2fGτ)2dτ.
*Mit der Substitution u^{2} = 8π \cdot {f_{G}}^{2} \cdot \tau^{2} und der Funktion \phi (x) kann man hierfür auch schreiben:
+
*With the substitution u^{2} = 8π \cdot {f_{G}}^{2} \cdot \tau^{2} and the function \phi (x) you can also write for this:
 
:g(t) = \ \frac {1}{\sqrt{2 \pi}} \cdot \int^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = \ \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}.
 
:g(t) = \ \frac {1}{\sqrt{2 \pi}} \cdot \int^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = \ \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}.
*Für die Zeit t = 0 gilt unter Berücksichtigung von \phi (-x) = 1 - \phi (x) und $f_{\rm G} \cdot T = 0.45$:
+
*For the time t = 0 is valid considering \phi (-x) = 1 - \phi (x) and $f_{\rm G} \cdot T = $0.45
 
:g(t = 0) = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= \ 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1.12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}.
 
:g(t = 0) = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= \ 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1.12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}.
  
  
  
'''(4)'''&nbsp; Mit a_{3} = +1 würde sich q_{\rm G}(t = 3 T) = 1 ergeben. Aufgrund der Linearität gilt somit:
+
'''(4)'''&nbsp; With a_{3} = +1 the result would be q_{\rm G}(t = 3 T) = 1. Due to the linearity, the following therefore applies:
 
:q_{\rm G}(t = 3 T ) = 1 - 2 \cdot g(t = 0)= 1 - 2 \cdot 0.737 \hspace{0.15cm} \underline {= -0.474} \hspace{0.05cm}.
 
:q_{\rm G}(t = 3 T ) = 1 - 2 \cdot g(t = 0)= 1 - 2 \cdot 0.737 \hspace{0.15cm} \underline {= -0.474} \hspace{0.05cm}.
  
  
  
'''(5)'''&nbsp; Mit dem Ergebnis aus (3) und $f_{\rm G} \cdot T = 0.45$ erhält man:
+
'''(5)'''&nbsp; With the result of (3) and $f_{\rm G} \cdot T = $0.45 you get
 
:g(t = T) = \ \phi(3 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T) \approx  \phi(3.36)-\phi(1.12) = 0.999 - 0.868 \hspace{0.15cm} \underline { = 0.131} \hspace{0.05cm}.
 
:g(t = T) = \ \phi(3 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T) \approx  \phi(3.36)-\phi(1.12) = 0.999 - 0.868 \hspace{0.15cm} \underline { = 0.131} \hspace{0.05cm}.
*Der Impulswert g(t = -T) ist aufgrund der Symmetrie des Gaußtiefpasses genau so groß.
+
*The pulse value g(t = -T) is exactly the same due to the symmetry of the Gaussian low pass.
  
  
  
'''(6)'''&nbsp; Bei alternierender Folge sind aus Symmetriegründen die Beträge |q_{\rm G}(\mu \cdot T)| bei allen Vielfachen der Bitdauer T alle gleich.  
+
'''(6)'''&nbsp; With alternating sequence, the absolute values |q_{\rm G}(\mu \cdot T)| are all the same for all multiples of the bit duration T for reasons of symmetry.  
*Alle Zwischenwerte bei t \approx \mu \cdot T sind dagegen kleiner.  
+
*All intermediate values at t \approx \mu \cdot T are smaller.  
*Unter Berücksichtigung von g(t ≥ 2T) \approx 0 wird jeder einzelne Impulswert g(0) durch den vorangegangenen Impuls mit g(t = T) verkleinert, ebenso vom folgenden Impuls mit g(t = -T).
+
* Taking g(t ≥ 2T) \approx 0 into account, each individual pulse value g(0) is reduced by the preceding pulse with g(t = T), and also by the following pulse with g(t = -T).
  
*Es ergeben sich also Impulsinterferenzen und man erhält:
+
*So there will be impulse interference and you get
 
:{\rm Max} \hspace{0.12cm}[q_{\rm G}(t)] = g(t = 0) - 2 \cdot g(t = T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}.
 
:{\rm Max} \hspace{0.12cm}[q_{\rm G}(t)] = g(t = 0) - 2 \cdot g(t = T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}.
  
Line 135: Line 136:
  
  
[[Category:Exercises for Mobile Communications|^3.3 Characteristics of GSM^]]
+
[[Category:Aufgaben zu  Mobile Kommunikation|^3.3 Die Charakteristika von GSM^]]
 
 
{{quiz-Header|Buchseite=Mobile Kommunikation/Die Charakteristika von GSM
 
}}
 
 
 
[[File:EN_Mob_A_3_5.png|right|frame|Verschiedene Signale bei GMSK-Modulation]]
 
The modulation method used for GSM is&nbsp; ''Gaussian Minimum Shift Keying'', short GMSK. This is a special type of FSK (''Frequency Shift Keying'') with CP-FSK (''Continuous Phase Matching''), where
 
*the modulation index has the smallest value that just satisfies the orthogonality condition: &nbsp; h = 0.5 &nbsp; &rArr; &nbsp; ''Minimum Shift Keying'',
 
*a Gaussian low pass with the impulse response&nbsp; h_{\rm G}(t)&nbsp; is inserted before the FSK modulator, with the aim of saving even more bandwidth.
 
 
 
 
 
The graphic illustrates the situation:
 
 
 
*The digital message is represented by the amplitude coefficients&nbsp; a_{\mu} ∈ \{±1\}&nbsp; which are applied to a Dirac pulse. It should be noted that the sequence drawn in is assumed for the subtask '''(3)'''.
 
 
 
*The symmetrical rectangular pulse with duration&nbsp; T = T_{\rm B}&nbsp; (GSM bit duration) is dimensionless:
 
:g_{\rm R}(t) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c} {\rm{{\rm{f\ddot{u}r}}}} \\ {\rm{{\rm{f\ddot{u}r}}}} \\ \end{array}\begin{array}{*{5}c} |\hspace{0.05cm} t \hspace{0.05cm}| < T/2 \hspace{0.05cm}, \\ |\hspace{0.05cm} t \hspace{0.05cm}| > T/2 \hspace{0.05cm}. \\ \end{array}
 
*This results for the rectangular signal
 
:q_{\rm R} (t) = q_{\rm \delta} (t) \star g_{\rm R}(t) = \sum_{\nu} a_{\nu}\cdot g_{\rm R}(t - \nu \cdot T)\hspace{0.05cm}.
 
*The Gaussian low pass is given by its frequency response or impulse response:
 
:H_{\rm G}(f) = {\rm e}^{-\pi\cdot (\frac{f}{2 f_{\rm G}})^2} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} h_{\rm G}(t) = 2 f_{\rm G} \cdot {\rm e}^{-\pi\cdot (2 f_{\rm G}\cdot t)^2}\hspace{0.05cm},
 
:where the system theoretical cut-off frequency&nbsp; f_{\rm G}&nbsp; is used. In the GSM specification, however, the 3dB cut-off frequency is specified with&nbsp; f_{\rm 3dB} = 0.3/T&nbsp;. From this,&nbsp; f_{\rm G}&nbsp; can be calculated directly - see subtask '''(2)'''.
 
 
 
*The signal after the gauss low pass is thus
 
:q_{\rm G} (t) = q_{\rm R} (t) \star h_{\rm G}(t) = \sum_{\nu} a_{\nu}\cdot g(t - \nu \cdot T)\hspace{0.05cm}.
 
Here&nbsp; g(t)&nbsp; is referred to as ''frequency pulse''. For this one:
 
:g(t) = q_{\rm R} (t) \star h_{\rm G}(t) \hspace{0.05cm}.
 
 
 
*With the low pass filtered signal&nbsp; q_{\rm G}(t), the carrier frequency&nbsp; f_{\rm T}&nbsp; and the frequency deviation&nbsp; \Delta f_{\rm A}&nbsp; can thus be written for the instantaneous frequency at the output of the FSK modulator::f_{\rm A}(t) = f_{\rm T} + \Delta f_{\rm A} \cdot q_{\rm G} (t)\hspace{0.05cm}.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
''Notes:''
 
 
 
*This exercise belongs to the chapter&nbsp;  [[Mobile_Kommunikation/Die_Charakteristika_von_GSM|Die Charakteristika von GSM]].
 
*Reference is also made to the chapter&nbsp;  [[Beispiele_von_Nachrichtensystemen/Funkschnittstelle|Funkschnittstelle]]&nbsp; in the book „Beispiele von Nachrichtensystemen”.
 
 
*For your calculations use the exemplary values&nbsp; f_{\rm T} = 900 \ \ \rm MHz&nbsp; and&nbsp; \Delta f_{\rm A} = 68 \ \rm kHz.
 
*Use the Gaussian integral to solve the task (some numerical values are given in the table)
 
[[File:P_ID2226__Bei_A_3_4b.png|right|frame|some values of the Gaussian integral]]
 
:\phi(x) =\frac {1}{\sqrt{2 \pi}} \cdot \int^{x} _{-\infty} {\rm e}^{-u^2/2}\,{\rm d}u \hspace{0.05cm}.
 
<br clear=all>
 
 
 
 
 
 
 
===Fragebogen===
 
 
 
<quiz display=simple>
 
 
 
{In what range of values can the instantaneous frequency&nbsp; f_{\rm A}(t)&nbsp; fluctuate? Which requirements must be met?
 
|type="{}"}
 
{\rm Max} \  \big[f_{\rm A}(t)\big] \ = \hspace{0.2cm} { 900.068 0.01% } \ \rm MHz
 
{\rm Min} \  \big[f_{\rm A}(t)\big] \ = \hspace{0.28cm} { 899.932 0.01% } \ \rm MHz
 
 
 
{Which (normalized) system-theoretical cut-off frequency of the Gaussian low pass results from the requirement&nbsp; f_{\rm 3dB} \cdot T = 0.3?
 
|type="{}"}
 
f_{\rm G} \cdot T \ = \ { 0.45 3% }
 
 
 
{Calculate the frequency pulse&nbsp; g(t)&nbsp; using the function&nbsp; \phi (x). How large is the pulse value&nbsp; g(t = 0)?
 
|type="{}"}
 
g(t = 0) \ = \ { 0.737 3% }
 
 
 
{Which signal value results for&nbsp; q_{\rm G}(t = 3T)&nbsp; with&nbsp; a_{3} = -1&nbsp; and&nbsp; a_{\mu \ne 3} = +1? What is the instantaneous frequency&nbsp; f_{\rm A}(t = 3T)?
 
|type="{}"}
 
q_{\rm G}(t = 3T) \ = \ { -0.51822--0.42978 }
 
 
 
{Calculate the pulse values&nbsp; g(t = ±T)&nbsp; of the frequency pulse
 
|type="{}"}
 
g(t = ±T) \ = \ { 0.131 3% }
 
 
 
{The amplitude coefficients are alternating. What is the maximum amount of&nbsp; q_{G}(t)&nbsp;? Consider&nbsp; g(t ≥ 2 T) \approx 0.
 
|type="{}"}
 
{\rm Max} \ |q_{\rm G}(t)| \ = \ { 0.475 3% }
 
 
 
 
 
 
 
</quiz>
 
 
 
===Sample solution===
 
{{ML-Kopf}}
 
 
 
'''(1)'''&nbsp; If all amplitude coefficients a_{\mu} are equal to +1, then q_{\rm R}(t) = 1 is a constant. Thus, the Gaussian low pass has no influence and q_{\rm G}(t) = 1 results.
 
*The maximum frequency is thus
 
:{\rm Max}\ [f_{\rm A}(t)] = f_{\rm T} + \Delta f_{\rm A} \hspace{0.15cm} \underline {= 900.068\,{\rm MHz}} \hspace{0.05cm}.
 
*The minimum instantaneous frequency
 
:{\rm Min}\ [f_{\rm A}(t)] = f_{\rm T} - \Delta f_{\rm A} \hspace{0.15cm} \underline { = 899.932\,{\rm MHz}} \hspace{0.05cm}
 
is obtained when all amplitude coefficients are negative. In this case q_{\rm R}(t) = q_{\rm G}(t) = -1.
 
 
 
 
 
 
 
'''(2)'''&nbsp; The frequency at which the logarithmic power transfer function is 3 \ \rm dB less than f = 0 is called the 3dB cut-off frequency.
 
*This can also be expressed as follows:
 
:\frac {|H(f = f_{\rm 3dB})|}{|H(f = 0)|}= \frac{1}{\sqrt{2}} \hspace{0.05cm}.
 
*In particular the Gauss low pass because of H(f = 0) = 1:
 
:$$ H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$
 
*The numerical evaluation leads to  f_{\rm G} \approx 1.5 \cdot f_{\rm 3dB}.
 
 
 
 
 
 
 
 
 
 
 
{{ML-Fuß}}
 
 
 
 
 
 
 
[[Category:Exercises for Mobile Communications|^3.3 Characteristics of GSM^]]
 

Revision as of 09:59, 30 June 2020

Verschiedene Signale bei GMSK-Modulation

The modulation method used for GSM is  Gaussian Minimum Shift Keying, short GMSK. This is a special type of FSK (Frequency Shift Keying) with CP-FSK (Continuous Phase Matching), where

  • the modulation index has the smallest value that just satisfies the orthogonality condition:   h = 0.5   ⇒   Minimum Shift Keying,
  • a Gaussian low pass with the impulse response  h_{\rm G}(t)  is inserted before the FSK modulator, with the aim of saving even more bandwidth.


The graphic illustrates the situation:

  • The digital message is represented by the amplitude coefficients  a_{\mu} ∈ \{±1\}  which are applied to a Dirac pulse. It should be noted that the sequence drawn in is assumed for the subtask (3).
  • The symmetrical rectangular pulse with duration  T = T_{\rm B}  (GSM bit duration) is dimensionless:
g_{\rm R}(t) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c} {\rm{{\rm{f\ddot{u}r}}}} \\ {\rm{{\rm{f\ddot{u}r}}}} \\ \end{array}\begin{array}{*{5}c} |\hspace{0.05cm} t \hspace{0.05cm}| < T/2 \hspace{0.05cm}, \\ |\hspace{0.05cm} t \hspace{0.05cm}| > T/2 \hspace{0.05cm}. \\ \end{array}
  • This results for the rectangular signal
q_{\rm R} (t) = q_{\rm \delta} (t) \star g_{\rm R}(t) = \sum_{\nu} a_{\nu}\cdot g_{\rm R}(t - \nu \cdot T)\hspace{0.05cm}.
  • The Gaussian low pass is given by its frequency response or impulse response:
H_{\rm G}(f) = {\rm e}^{-\pi\cdot (\frac{f}{2 f_{\rm G}})^2} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} h_{\rm G}(t) = 2 f_{\rm G} \cdot {\rm e}^{-\pi\cdot (2 f_{\rm G}\cdot t)^2}\hspace{0.05cm},
where the system theoretical cut-off frequency  f_{\rm G}  is used. In the GSM specification, however, the 3dB cut-off frequency is specified with  f_{\rm 3dB} = 0.3/T . From this,  f_{\rm G}  can be calculated directly - see subtask (2).
  • The signal after the gauss low pass is thus
q_{\rm G} (t) = q_{\rm R} (t) \star h_{\rm G}(t) = \sum_{\nu} a_{\nu}\cdot g(t - \nu \cdot T)\hspace{0.05cm}.

Here  g(t)  is referred to as frequency pulse. For this one:

g(t) = q_{\rm R} (t) \star h_{\rm G}(t) \hspace{0.05cm}.
  • With the low pass filtered signal  q_{\rm G}(t), the carrier frequency  f_{\rm T}  and the frequency deviation  \Delta f_{\rm A}  can thus be written for the instantaneous frequency at the output of the FSK modulator::f_{\rm A}(t) = f_{\rm T} + \Delta f_{\rm A} \cdot q_{\rm G} (t)\hspace{0.05cm}.




Notes:

  • For your calculations use the exemplary values  f_{\rm T} = 900 \ \ \rm MHz  and  \Delta f_{\rm A} = 68 \ \rm kHz.
  • Use the Gaussian integral to solve the task (some numerical values are given in the table)
some values of the Gaussian integral
\phi(x) =\frac {1}{\sqrt{2 \pi}} \cdot \int^{x} _{-\infty} {\rm e}^{-u^2/2}\,{\rm d}u \hspace{0.05cm}.


Questionnaire

1

In what range of values can the instantaneous frequency  f_{\rm A}(t)  fluctuate? Which requirements must be met?

{\rm Max} \ \big[f_{\rm A}(t)\big] \ = \hspace{0.2cm}

\ \rm MHz
{\rm Min} \ \big[f_{\rm A}(t)\big] \ = \hspace{0.28cm}

\ \rm MHz

2

Which (normalized) system-theoretical cut-off frequency of the Gaussian low pass results from the requirement  f_{\rm 3dB} \cdot T = 0.3?

f_{\rm G} \cdot T \ = \

3

Calculate the frequency pulse  g(t)  using the function  \phi (x). How large is the pulse value  g(t = 0)?

g(t = 0) \ = \

4

Which signal value results for  q_{\rm G}(t = 3T)  with  a_{3} = -1  and  a_{\mu \ne 3} = +1? What is the instantaneous frequency  f_{\rm A}(t = 3T)?

q_{\rm G}(t = 3T) \ = \

5

Calculate the pulse values  g(t = ±T)  of the frequency pulse

g(t = ±T) \ = \

6

The amplitude coefficients are alternating. What is the maximum amount of  q_{G}(t) ? Consider  g(t ≥ 2 T) \approx 0.

{\rm Max} \ |q_{\rm G}(t)| \ = \


Musterlösung

(1)  If all amplitude coefficients a_{\mu} are equal to +1, then q_{\rm R}(t) = 1 is a constant. Thus, the Gaussian low pass has no influence and q_{\rm G}(t) = 1 results.

  • The maximum frequency is thus
{\rm Max}\ [f_{\rm A}(t)] = f_{\rm T} + \Delta f_{\rm A} \hspace{0.15cm} \underline {= 900.068\,{\rm MHz}} \hspace{0.05cm}.
  • The minimum instantaneous frequency
{\rm Min}\ [f_{\rm A}(t)] = f_{\rm T} - \Delta f_{\rm A} \hspace{0.15cm} \underline { = 899.932\,{\rm MHz}} \hspace{0.05cm}

is obtained when all amplitude coefficients are negative. In this case q_{\rm R}(t) = q_{\rm G}(t) = -1.


(2)  The frequency at which the logarithmic power transfer function is 3 \ \rm dB less than f = 0 is called the 3dB cut-off frequency.

  • This can also be expressed as follows:
\frac {|H(f = f_{\rm 3dB})|}{|H(f = 0)|}= \frac{1}{\sqrt{2}} \hspace{0.05cm}.
  • In particular the Gauss low pass because of H(f = 0) = 1:
H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.
  • The numerical evaluation leads to f_{\rm G} \approx 1.5 \cdot f_{\rm 3dB}.
  • Aus f_{\rm 3dB} \cdot T = 0.3 folgt somit f_{\rm G} \cdot T \underline{\approx 0.45}.



(3)  The frequency pulse {\rm g}(t) results from the convolution of the rectangular function g_{\rm R}(t) with the pulse response h_{\rm G}(t):

g(t) = g_{\rm R} (t) \star h_{\rm G}(t) = 2 f_{\rm G} \cdot \int^{t + T/2} _{t - T/2} {\rm e}^{-\pi\cdot (2 f_{\rm G}\cdot \tau)^2}\,{\rm d}\tau \hspace{0.05cm}.
  • With the substitution u^{2} = 8π \cdot {f_{G}}^{2} \cdot \tau^{2} and the function \phi (x) you can also write for this:
g(t) = \ \frac {1}{\sqrt{2 \pi}} \cdot \int^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = \ \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}.
  • For the time t = 0 is valid considering \phi (-x) = 1 - \phi (x) and f_{\rm G} \cdot T = 0.45
g(t = 0) = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= \ 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1.12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}.


(4)  With a_{3} = +1 the result would be q_{\rm G}(t = 3 T) = 1. Due to the linearity, the following therefore applies:

q_{\rm G}(t = 3 T ) = 1 - 2 \cdot g(t = 0)= 1 - 2 \cdot 0.737 \hspace{0.15cm} \underline {= -0.474} \hspace{0.05cm}.


(5)  With the result of (3) and f_{\rm G} \cdot T = 0.45 you get

g(t = T) = \ \phi(3 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T) \approx \phi(3.36)-\phi(1.12) = 0.999 - 0.868 \hspace{0.15cm} \underline { = 0.131} \hspace{0.05cm}.
  • The pulse value g(t = -T) is exactly the same due to the symmetry of the Gaussian low pass.


(6)  With alternating sequence, the absolute values |q_{\rm G}(\mu \cdot T)| are all the same for all multiples of the bit duration T for reasons of symmetry.

  • All intermediate values at t \approx \mu \cdot T are smaller.
  • Taking g(t ≥ 2T) \approx 0 into account, each individual pulse value g(0) is reduced by the preceding pulse with g(t = T), and also by the following pulse with g(t = -T).
  • So there will be impulse interference and you get
{\rm Max} \hspace{0.12cm}[q_{\rm G}(t)] = g(t = 0) - 2 \cdot g(t = T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}.