Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.5: GMSK Modulation"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:EN_Mob_A_3_5.png|right|frame|Verschiedene Signale bei GMSK-Modulation]]
+
[[File:EN_Mob_A_3_5.png|right|frame|different signals of GMSK-Modulation]]
  
 
The modulation method used for GSM is  ''Gaussian Minimum Shift Keying'', short GMSK. This is a special type of FSK (''Frequency Shift Keying'') with CP-FSK (''Continuous Phase Matching''), where
 
The modulation method used for GSM is  ''Gaussian Minimum Shift Keying'', short GMSK. This is a special type of FSK (''Frequency Shift Keying'') with CP-FSK (''Continuous Phase Matching''), where

Revision as of 10:06, 30 June 2020

different signals of GMSK-Modulation

The modulation method used for GSM is  Gaussian Minimum Shift Keying, short GMSK. This is a special type of FSK (Frequency Shift Keying) with CP-FSK (Continuous Phase Matching), where

  • the modulation index has the smallest value that just satisfies the orthogonality condition:   h=0.5   ⇒   Minimum Shift Keying,
  • a Gaussian low pass with the impulse response  hG(t)  is inserted before the FSK modulator, with the aim of saving even more bandwidth.


The graphic illustrates the situation:

  • The digital message is represented by the amplitude coefficients  aμ{±1}  which are applied to a Dirac pulse. It should be noted that the sequence drawn in is assumed for the subtask (3).
  • The symmetrical rectangular pulse with duration  T=TB  (GSM bit duration) is dimensionless:
gR(t)={10f¨urf¨ur|t|<T/2,|t|>T/2.
  • This results for the rectangular signal
qR(t)=qδ(t)gR(t)=νaνgR(tνT).
  • The Gaussian low pass is given by its frequency response or impulse response:
HG(f)=eπ(f2fG)2hG(t)=2fGeπ(2fGt)2,
where the system theoretical cut-off frequency  fG  is used. In the GSM specification, however, the 3dB cut-off frequency is specified with  f3dB=0.3/T . From this,  fG  can be calculated directly - see subtask (2).
  • The signal after the gauss low pass is thus
qG(t)=qR(t)hG(t)=νaνg(tνT).

Here  g(t)  is referred to as frequency pulse. For this one:

g(t)=qR(t)hG(t).
  • With the low pass filtered signal  qG(t), the carrier frequency  fT  and the frequency deviation  ΔfA  can thus be written for the instantaneous frequency at the output of the FSK modulator::fA(t)=fT+ΔfAqG(t).




Notes:

  • For your calculations use the exemplary values  fT=900  MHz  and  ΔfA=68 kHz.
  • Use the Gaussian integral to solve the task (some numerical values are given in the table)
some values of the Gaussian integral
ϕ(x)=12πxeu2/2du.


Questionnaire

1

In what range of values can the instantaneous frequency  fA(t)  fluctuate? Which requirements must be met?

Max [fA(t)] =

 MHz
Min [fA(t)] =

 MHz

2

Which (normalized) system-theoretical cut-off frequency of the Gaussian low pass results from the requirement  f3dBT=0.3?

fGT = 

3

Calculate the frequency pulse  g(t)  using the function  ϕ(x). How large is the pulse value  g(t=0)?

g(t=0) = 

4

Which signal value results for  qG(t=3T)  with  a3=1  and  aμ3=+1? What is the instantaneous frequency  fA(t=3T)?

qG(t=3T) = 

5

Calculate the pulse values  g(t=±T)  of the frequency pulse

g(t=±T) = 

6

The amplitude coefficients are alternating. What is the maximum amount of  qG(t) ? Consider  g(t2T)0.

Max |qG(t)| = 


Sample solution

(1)  If all amplitude coefficients aμ are equal to +1, then qR(t)=1 is a constant. Thus, the Gaussian low pass has no influence and qG(t)=1 results.

  • The maximum frequency is thus
Max [fA(t)]=fT+ΔfA=900.068MHz_.
  • The minimum instantaneous frequency
Min [fA(t)]=fTΔfA=899.932MHz_

is obtained when all amplitude coefficients are negative. In this case qR(t)=qG(t)=1.


(2)  The frequency at which the logarithmic power transfer function is 3 dB less than f=0 is called the 3dB cut-off frequency.

  • This can also be expressed as follows:
|H(f=f3dB)||H(f=0)|=12.
  • In particular the Gauss low pass because of H(f=0)=1:
H(f=f3dB)=eπ(f3dB/2fG)2=12(f3dB2fG)2=ln2πfG=π4ln2f3dB.
  • The numerical evaluation leads to fG1.5f3dB.
  • From f3dBT=0.3 follows fGT0.45_.



(3)  The frequency pulse g(t) results from the convolution of the rectangular function gR(t) with the pulse response hG(t):

g(t)=gR(t)hG(t)=2fGt+T/2tT/2eπ(2fGτ)2dτ.
  • With the substitution u^{2} = 8π \cdot {f_{G}}^{2} \cdot \tau^{2} and the function \phi (x) you can also write for this:
g(t) = \ \frac {1}{\sqrt{2 \pi}} \cdot \int^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = \ \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}.
  • For the time t = 0 is valid considering \phi (-x) = 1 - \phi (x) and f_{\rm G} \cdot T = 0.45
g(t = 0) = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= \ 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1.12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}.


(4)  With a_{3} = +1 the result would be q_{\rm G}(t = 3 T) = 1. Due to the linearity, the following therefore applies:

q_{\rm G}(t = 3 T ) = 1 - 2 \cdot g(t = 0)= 1 - 2 \cdot 0.737 \hspace{0.15cm} \underline {= -0.474} \hspace{0.05cm}.


(5)  With the result of (3) and f_{\rm G} \cdot T = 0.45 you get

g(t = T) = \ \phi(3 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T) \approx \phi(3.36)-\phi(1.12) = 0.999 - 0.868 \hspace{0.15cm} \underline { = 0.131} \hspace{0.05cm}.
  • The pulse value g(t = -T) is exactly the same due to the symmetry of the Gaussian low pass.


(6)  With alternating sequence, the absolute values |q_{\rm G}(\mu \cdot T)| are all the same for all multiples of the bit duration T for reasons of symmetry.

  • All intermediate values at t \approx \mu \cdot T are smaller.
  • Taking g(t ≥ 2T) \approx 0 into account, each individual pulse value g(0) is reduced by the preceding pulse with g(t = T), and also by the following pulse with g(t = -T).
  • So there will be impulse interference and you get
{\rm Max} \hspace{0.12cm}[q_{\rm G}(t)] = g(t = 0) - 2 \cdot g(t = T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}.