Difference between revisions of "Aufgaben:Exercise 3.7Z: Spread Spectrum in UMTS"

From LNTwww
Line 63: Line 63:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp; Richtig ist der  <u>Lösungsvorschlag 2</u>:
+
'''(1)'''&nbsp; Correct is the <u>solution 2</u>:
*Fest vorgegeben ist bei UMTS die Chipdauer $T_{\rm C}$, die in der Teilaufgabe '''(2)''' noch berechnet werden soll.  
+
*For UMTS, the chip duration $T_{\rm C}$, which is still to be calculated in the subtask '''(2)''', is predefined.  
*Je größer der Spreizgrad $J$ ist, desto größer ist die Bitdauer.
+
*The greater the degree of spreading $J$, the greater the bit duration.
 
   
 
   
  
  
'''(2)'''&nbsp; Laut dem Hinweis auf der Angabenseite werden in $10 \ \rm ms$ genau $15 \cdot 2560 = 38400 \ \rm Chips$ übertragen.  
+
'''(2)'''&nbsp; According to the note on the information page, in $10 \ \rm ms$ exactly $15 \cdot 2560 = 38400 \ \rm Chips$ are transferred.  
*Damit beträgt die Chiprate &nbsp; $R_{\rm C} = 100 \cdot 38400 \ {\rm Chips/s} \ \underline{= 3.84 \ \rm Mchip/s}$.  
+
*With this the chip rate is &nbsp; $R_{\rm C} = 100 \cdot 38400 \ {\rm Chips/s} \ \underline{= 3.84 \ \rm Mchip/s}$.  
*Die Chipdauer ist der Kehrwert hierzu: &nbsp; $T_{\rm C} \ \underline{\approx 0.26 \ \rm &micro; s}$.
+
*The chip duration is the reciprocal of this: &nbsp; $T_{\rm C} \ \underline{\approx 0.26 \ \rm &micro; s}$.
  
  
  
'''(3)'''&nbsp; Jedes Datenbit besteht aus vier Spreizchips &nbsp; &rArr; &nbsp;  $\underline{J = 4}$.
+
'''(3)'''&nbsp; Each data bit consists of four spreading chips &nbsp; &rArr; &nbsp;  $\underline{J = 4}$.
  
  
  
'''(4)'''&nbsp; Die Bitrate ergibt sich mit dem Spreizfaktor $J = 4$ zu $R_{\rm B} = R_{\rm C}/J \ \underline{= 960 \ \rm  kbit/s}$.
+
'''(4)'''&nbsp; The bit rate is calculated with the spreading factor $J = 4$ zu $R_{\rm B} = R_{\rm C}/J \ \underline{= 960 \ \rm  kbit/s}$.
* Mit dem für UMTS maximalen Spreizfaktor $J = 512$ beträgt die Bitrate dagegen nur  $7.5 \ \rm kbit/s$.
+
* With the maximum spreading factor $J = 512$ for UMTS, the bit rate is only 5s $7.5 \ \rm kbit/s$.
  
  
  
'''(5)'''&nbsp; Für das Sendesignal gilt $s(t) = q(t) \cdot c(t)$.  
+
'''(5)'''&nbsp; The following applies to the transmitted signal $s(t) = q(t) \cdot c(t)$.  
*Die Chips $s_{3}$ und $s_{4}$ des Sendesignals gehören zum ersten Datenbit ($q_{1} = +1)$:
+
*The chips $s_{3}$ and $s_{4}$ of the transmit signal belong to the first data bit  ($q_{1} = +1)$:
 
:$$s_3 = c_3 \hspace{0.15cm}\underline {= -1},\hspace{0.4cm}s_4 = c_4 \hspace{0.15cm}\underline {= +1}\hspace{0.05cm}.$$
 
:$$s_3 = c_3 \hspace{0.15cm}\underline {= -1},\hspace{0.4cm}s_4 = c_4 \hspace{0.15cm}\underline {= +1}\hspace{0.05cm}.$$
*Dagegen sind die beiden weiteren gesuchten Sendechips dem zweiten Datenbit $(q_{2} = -1)$ zuzuordnen:
+
*On the other hand, the two other transmission chips sought are to be assigned to the second data bit $(q_{2} = -1)$:
 
:$$s_5 = -c_5= -c_1 \hspace{0.15cm}\underline {= -1},\hspace{0.4cm}s_6 = -c_6= -c_2 \hspace{0.15cm}\underline {= +1}\hspace{0.05cm}$$
 
:$$s_5 = -c_5= -c_1 \hspace{0.15cm}\underline {= -1},\hspace{0.4cm}s_6 = -c_6= -c_2 \hspace{0.15cm}\underline {= +1}\hspace{0.05cm}$$
  

Revision as of 21:25, 7 July 2020

Source signal and spread signal

For UMTS/CDMA, the so-called PN modulation is applied:

  • The rectangular digital signal  $q(t)$  is multiplied by the spread signal  $c(t)$  and gives the transmit signal  $s(t)$.
  • This is by the spreading factor  $J$  higher frequent (=more frequent) than  $q(t)$; this is called  band spreading.

At the receiver the same spreading signal  $c(t)$  is added (namely in phase!). This reverses the band spreading   ⇒   band compression

The diagram shows exemplary signal characteristics of  $q(t)$  und  $c(t)$.



Notes:

  • This exercise belongs to the chapter   Die Charakteristika von UMTS.
  • Reference is made to the chapter  Nachrichtentechnische Aspekte von UMTS  in the book„Beispiele von Nachrichtensystemen”.
  • For the calculation of the chip duration   $T_{\rm C}$ , please refer to page  Physikalische Kanäle .
  • There you will find, among other things, the information important for this task, which is transmitted on the so-called  Dedicated Physical Channel  (DPCH) in ten milliseconds exactly  $15 \cdot 2560 \ \rm Chips$ .
  • In subtask (5), the system asks for transmit chips. For example, the "sending chip"  $s_{3}$  denotes the constant signal value of  $s(t)$  in the time interval  $2T_{\rm C}$ ... $3T_{\rm C}$.



Questionnaire

1

Which of the following statements are true?

For UMTS the bit duration  $T_{\rm B}$  is fixed.
For UMTS, the chip duration  $T_{\rm C}$  is fixed.
Both values depend on the channel conditions.

2

Specify the chip duration  $T_{\rm C}$  and the chip rate  $R_{\rm C}$  in the downlink.

$R_{\rm C} \ = \ $

$\ \rm Mchip/s $
$T_{\rm C} \hspace{0.18cm} = \ $

$ \ \rm µ s $

3

Which spreading factor can be read from the graph on the data page?

$J \ = \ $

4

What is the bit rate with this spreading factor?

$R_{\rm B} \ = \ $

$\ \rm kbit/s $

5

What values do the „chips” of the transmit signal have?

$s_{3} \ = \ $

$s_{4} \ = \ $

$s_{5} \ = \ $

$s_{6} \ = \ $


Musterlösung

(1)  Correct is the solution 2:

  • For UMTS, the chip duration $T_{\rm C}$, which is still to be calculated in the subtask (2), is predefined.
  • The greater the degree of spreading $J$, the greater the bit duration.


(2)  According to the note on the information page, in $10 \ \rm ms$ exactly $15 \cdot 2560 = 38400 \ \rm Chips$ are transferred.

  • With this the chip rate is   $R_{\rm C} = 100 \cdot 38400 \ {\rm Chips/s} \ \underline{= 3.84 \ \rm Mchip/s}$.
  • The chip duration is the reciprocal of this:   $T_{\rm C} \ \underline{\approx 0.26 \ \rm µ s}$.


(3)  Each data bit consists of four spreading chips   ⇒   $\underline{J = 4}$.


(4)  The bit rate is calculated with the spreading factor $J = 4$ zu $R_{\rm B} = R_{\rm C}/J \ \underline{= 960 \ \rm kbit/s}$.

  • With the maximum spreading factor $J = 512$ for UMTS, the bit rate is only 5s $7.5 \ \rm kbit/s$.


(5)  The following applies to the transmitted signal $s(t) = q(t) \cdot c(t)$.

  • The chips $s_{3}$ and $s_{4}$ of the transmit signal belong to the first data bit ($q_{1} = +1)$:
$$s_3 = c_3 \hspace{0.15cm}\underline {= -1},\hspace{0.4cm}s_4 = c_4 \hspace{0.15cm}\underline {= +1}\hspace{0.05cm}.$$
  • On the other hand, the two other transmission chips sought are to be assigned to the second data bit $(q_{2} = -1)$:
$$s_5 = -c_5= -c_1 \hspace{0.15cm}\underline {= -1},\hspace{0.4cm}s_6 = -c_6= -c_2 \hspace{0.15cm}\underline {= +1}\hspace{0.05cm}$$