Difference between revisions of "Aufgaben:Exercise 3.6Z: Complex Exponential Function"
m (Text replacement - "Category:Aufgaben zu Signaldarstellung" to "Category:Exercises for Signal Representation") |
m (Text replacement - "Zum_Rechnen_mit_komplexen_Zahlen" to "Calculating_With_Complex_Numbers") |
||
Line 64: | Line 64: | ||
erhält man durch zweimalige Anwendung des Verschiebungssatzes (im Frequenzbereich): | erhält man durch zweimalige Anwendung des Verschiebungssatzes (im Frequenzbereich): | ||
:$$U( f ) = {A}/{2} \cdot \delta ( {f - f_0 } ) - {A}/{2} \cdot \delta ( {f + f_0 } )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ u( t ) = {A}/{2} \cdot \left( {{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0\hspace{0.05cm}\cdot \hspace{0.05cm} t} - {\rm{e}}^{{\rm{ - j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} } \right).$$ | :$$U( f ) = {A}/{2} \cdot \delta ( {f - f_0 } ) - {A}/{2} \cdot \delta ( {f + f_0 } )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ u( t ) = {A}/{2} \cdot \left( {{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0\hspace{0.05cm}\cdot \hspace{0.05cm} t} - {\rm{e}}^{{\rm{ - j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} } \right).$$ | ||
− | *Nach dem [[Signal_Representation/ | + | *Nach dem [[Signal_Representation/Calculating_With_Complex_Numbers#Darstellung_nach_Betrag_und_Phase|Satz von Euler]] kann hierfür auch geschrieben werden: |
:$$u( t ) = {\rm{j}} \cdot A \cdot \sin ( {2{\rm{\pi }}f_0 t} ).$$ | :$$u( t ) = {\rm{j}} \cdot A \cdot \sin ( {2{\rm{\pi }}f_0 t} ).$$ | ||
:*Der <u>Realteil dieses Signals ist stets Null</u>. | :*Der <u>Realteil dieses Signals ist stets Null</u>. | ||
Line 73: | Line 73: | ||
'''(3)''' Wegen $X(f) = G(f) + U(f)$ gilt auch: | '''(3)''' Wegen $X(f) = G(f) + U(f)$ gilt auch: | ||
:$$x(t) = g(t) + u(t) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ) + {\rm{j}} \cdot A \cdot \sin( {2{\rm{\pi }}f_0 t} ).$$ | :$$x(t) = g(t) + u(t) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ) + {\rm{j}} \cdot A \cdot \sin( {2{\rm{\pi }}f_0 t} ).$$ | ||
− | Dieses Ergebnis kann mit dem [[Signal_Representation/ | + | Dieses Ergebnis kann mit dem [[Signal_Representation/Calculating_With_Complex_Numbers#Darstellung_nach_Betrag_und_Phase|Satz von Euler]] wie folgt zusammengefasst werden: |
:$$x(t) = A \cdot {\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} .$$ | :$$x(t) = A \cdot {\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} .$$ | ||
Richtig sind die vorgegebenen <u>Alternativen 1 und 3</u>: | Richtig sind die vorgegebenen <u>Alternativen 1 und 3</u>: |
Revision as of 09:34, 1 September 2020
In Zusammenhang mit den Bandpass-Systemen wird oft mit einseitigen Spektren gearbeitet. In der Abbildung sehen Sie eine solche einseitige Spektralfunktion ${X(f)}$, die ein komplexes Zeitsignal ${x(t)}$ zur Folge hat.
In der unteren Skizze ist ${X(f)}$ in einen – bezüglich der Frequenz – geraden Anteil ${G(f)}$ sowie einen ungeraden Anteil ${U(f)}$ aufgespaltet.
Hinweise:
- Die Aufgabe gehört zum Kapitel Gesetzmäßigkeiten der Fouriertransformation.
- Alle dort dargelegten Gesetzmäßigkeiten werden im Lernvideo Gesetzmäßigkeiten der Fouriertransformation an Beispielen verdeutlicht.
- Lösen Sie diese Aufgabe mit Hilfe des Zuordnungssatzes und des Verschiebungssatzes.
- Verwenden Sie für die beiden ersten Teilaufgaben die Signalparameter $A = 1\, \text{V}$ und $f_0 = 125 \,\text{kHz}.$
Fragebogen
Musterlösung
- $$g( t ) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$
Bei $t = 1 \, µ\text {s}$ ist der Signalwert gleich $A \cdot \cos(\pi /4)$:
- Der Realteil ist $\text{Re}[g(t = 1 \, µ \text {s})] = \;\underline{0.707\, \text{V}}$,
- der Imaginärteil ist $\text{Im}[g(t = 1 \, µ \text {s})] = \;\underline{0.}$
(2) Ausgehend von der Fourierkorrespondenz
- $$A \cdot {\rm \delta} ( f )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ A$$
erhält man durch zweimalige Anwendung des Verschiebungssatzes (im Frequenzbereich):
- $$U( f ) = {A}/{2} \cdot \delta ( {f - f_0 } ) - {A}/{2} \cdot \delta ( {f + f_0 } )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ u( t ) = {A}/{2} \cdot \left( {{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0\hspace{0.05cm}\cdot \hspace{0.05cm} t} - {\rm{e}}^{{\rm{ - j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} } \right).$$
- Nach dem Satz von Euler kann hierfür auch geschrieben werden:
- $$u( t ) = {\rm{j}} \cdot A \cdot \sin ( {2{\rm{\pi }}f_0 t} ).$$
- Der Realteil dieses Signals ist stets Null.
- Bei $t = 1 \, µ\text {s}$ gilt für den Imaginärteil: $\text{Im}[g(t = 1 \, µ \text {s})] = \;\underline{0.707\, \text{V}}$.
(3) Wegen $X(f) = G(f) + U(f)$ gilt auch:
- $$x(t) = g(t) + u(t) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ) + {\rm{j}} \cdot A \cdot \sin( {2{\rm{\pi }}f_0 t} ).$$
Dieses Ergebnis kann mit dem Satz von Euler wie folgt zusammengefasst werden:
- $$x(t) = A \cdot {\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} .$$
Richtig sind die vorgegebenen Alternativen 1 und 3:
- Das Signal dreht in der komplexen Ebene in mathematisch positiver Richtung, also entgegen dem Uhrzeigersinn.
- Für eine Umdrehung benötigt der „Zeiger” die Periodendauer $T_0 = 1/f_0 = 8 \, µ\text {s}$.