Difference between revisions of "Aufgaben:Exercise 3.8Z: Convolution of Two Rectangles"
m (Oezdemir moved page Aufgabe 3.8Z: Faltung zweier Rechtecke to Exercise 3.8Z:Convolution of Two Rectangles) |
|||
Line 4: | Line 4: | ||
[[File:P_ID535__Sig_Z_3_8.png|right|frame|Zur Faltung zweier Rechtecke]] | [[File:P_ID535__Sig_Z_3_8.png|right|frame|Zur Faltung zweier Rechtecke]] | ||
− | + | At the input of a causal LTI system (i.e. linear and time-invariant) with a rectangular impulse response ${h(t)}$ of duration $2 \,\text{ms}$ , a rectangular impulse ${x(t)}$ of duration $T = 3 \,\text{ms}$ and amplitude $A = 2\,\text{ V}$ is applied. The square-wave functions each start at the time $t = 0$. | |
− | In | + | In this task you are to calculate the output signal ${y(t)}$ with the help of the graphic convolution. As you can easily check, the output signal ${y(t)}$ |
− | * | + | *differs from zero only in the range from $0$ to $5 \, \text{ms}$ and |
− | * | + | *is symmetrical at the time $t = 2.5 \, \text{ms}$. |
Revision as of 19:55, 28 January 2021
At the input of a causal LTI system (i.e. linear and time-invariant) with a rectangular impulse response ${h(t)}$ of duration $2 \,\text{ms}$ , a rectangular impulse ${x(t)}$ of duration $T = 3 \,\text{ms}$ and amplitude $A = 2\,\text{ V}$ is applied. The square-wave functions each start at the time $t = 0$.
In this task you are to calculate the output signal ${y(t)}$ with the help of the graphic convolution. As you can easily check, the output signal ${y(t)}$
- differs from zero only in the range from $0$ to $5 \, \text{ms}$ and
- is symmetrical at the time $t = 2.5 \, \text{ms}$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Faltungssatz und Faltungsoperation.
- Sie bezieht sich vorwiegend auf die Seite Grafische Faltung
- Die Thematik dieses Abschnitts wird auch im interaktiven Applet Zur Verdeutlichung der grafischen Faltung veranschaulicht.
Fragebogen
Musterlösung
(1) Allgemein gilt für das Faltungsintegral:
- $$y(t) = \int_{ - \infty }^{ + \infty } {x( \tau ) \cdot h( {t - \tau } )}\hspace{0.1cm} {\rm d}\tau.$$
Hinweis: Die Abszissen in nebenstehender Grafik wurden zu $\tau$ umbenannt.
Der Signalwert zum Zeitpunkt $t = 1 \,\text{ms}$ kann wie folgt berechnet werden:
- Spiegelung der Impulsantwort ${h(\tau)}$,
- Verschiebung um $t = 1 \text{ ms}$ nach rechts (violette Kurve in der Skizze),
- Multiplikation der beiden Funktionen sowie Integration.
Das Produkt ist ebenfalls rechteckförmig mit der Höhe $2 \text{ V} \cdot 300 \; \text{1/s}$ und der Breite $1 \,\text{ms}$. Daraus ergibt sich für die Fläche:
- $$y( {t = 1\;{\rm{ms}}} ) \hspace{0.15 cm}\underline{= 0.6\;{\rm{V}}}{\rm{.}}$$
Das grüne Rechteck verdeutlicht die Berechnung des zweiten Signalwertes. Nun ist das resultierende Rechteck nach der Multiplikation doppelt so breit und man erhält:
- $$y( {t = 2\;{\rm{ms}}} ) = 2\;{\rm{V}} \cdot {\rm{300}}\;{1}/{{\rm{s}}} \cdot 2\;{\rm{ms}}\hspace{0.15 cm}\underline{={\rm{1.2}}\;{\rm{V}}}{\rm{.}}$$
(2) Wegen der Symmetrie von ${y(t)}$ bezüglich des Zeitpunktes $t = 2.5\, \text {ms}$ gilt:
- $$y( {t = 3\;{\rm{ms}}} ) = y( {t = 2\;{\rm{ms}}} ) \hspace{0.15 cm}\underline{= {\rm{1}}{\rm{.2}}\;{\rm{V}}}{\rm{,}}$$
- $$y( {t = 4\;{\rm{ms}}} ) = y( {t = 1\;{\rm{ms}}} )\hspace{0.15 cm}\underline{ = 0.6\;{\rm{V}}}{\rm{.}}$$
(3) In den Teilaufgaben (1) und (2) wurden die Signalwerte zu diskreten Zeitpunkten berechnet.
- Alle Punkte sind durch Geradenstücke zu verbinden, da die Integration über Rechteckfunktionen wachsender Breite einen linearen Verlauf ergibt.
- Das heißt: Das Ausgangssignal ${y(t)}$ ist trapezförmig.
- Das dazugehörige Spektrum ist komplex und lautet:
- $$Y(f) = 6 \cdot 10^{ - 3} \;{{\rm{V}}}/{{{\rm{Hz}}}} \cdot {\mathop{\rm si}\nolimits} ( {2\;{\rm{ms}}\cdot{\rm{\pi }}f} ) \cdot {\mathop{\rm si}\nolimits} ( {3\;{\rm{ms}}\cdot{\rm{\pi }}f}) \cdot {\rm{e}}^{ - {\rm{j \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \hspace{0.05cm}\cdot \hspace{0.05cm}2.5\;{\rm{ms}}\hspace{0.05cm}\cdot \hspace{0.05cm} \pi }}f} .$$
- Hätte der Eingangsimpuls ${x(t)}$ die Dauer $T = 2\, \text {ms}$, so würde ${y(t)}$ einen dreieckförmigen Signalverlauf zwischen ${t = 0}$ und $t = 4 \text { ms}$ zeigen.
- Das Maximum $1.2 \, \text {V}$ ergäbe sich dann nur zum Zeitpunkt $t = 2 \, \text {ms}$.
Richtig sind somit die Lösungsvorschläge 1 und 3.