Difference between revisions of "Applets:Period Duration of Periodic Signals"
Line 5: | Line 5: | ||
==Applet Descripition== | ==Applet Descripition== | ||
<br> | <br> | ||
− | + | This applet draws the course and calculates the period duration $T_0$ of the periodic function | |
:$$x(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right).$$ | :$$x(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right).$$ | ||
− | + | Please note: | |
− | * | + | *The phases $\varphi_i$ must be entered here in radians. Conversion from the input value: $\varphi_i \text{[in radians]} =\varphi_i \text{[in degrees]}/360 \cdot 2\pi$. |
− | * | + | *The maximum value $x_{\rm max}$ and a signal value $x(t_*)$ at a given time $t_*$ are also output. |
− | |||
− | |||
− | |||
==Theoretical background== | ==Theoretical background== | ||
<br> | <br> | ||
− | + | A ''periodic signal'' $x(t)$ is present exactly when it is not constant and for all arbitrary values of $t$ and all integer values of $i$ with an appropriate $T_{0}$ applies: $x(t+i\cdot T_{0}) = x(t).$ | |
+ | *$T_0$ is called the '''period duration''' and $f_0 = 1/T_0$ the '''basic frequency'''. | ||
− | * | + | *For a harmonic oscillation $x_1(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)$ applies $f_0 = f_1$ and $T_0 = 1/f_1$, independent of the phase $\varphi_1$ and the amplitude $A_1 \ne 0$. |
− | {{ | + | {{BlueBox|TEXT= |
− | $\text{ | + | $\text{Calculation Rule: }$ If the periodic signal $x(t)$ consists of two parts $x_1(t)$ and $x_2(t)$ like in this applet, then applies for the basic frequency and the period duration with $A_1 \ne 0$, $f_1 \ne 0$, $A_2 \ne 0$, $f_2 \ne 0$: |
+ | |||
+ | :$$f_0 = {\rm gcd}(f_1, \ f_2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}T_0 = 1/f_0.$$ | ||
− | + | Here $\rm gcd$ denotes the '''greatest common divisor'''.}} | |
− | |||
Line 154: | Line 153: | ||
*2017 wurde dieses Programm von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#David_Jobst_.28Ingenieurspraxis_Math_2017.29|David Jobst]] im Rahmen seiner Ingenieurspraxis (Betreuer: [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]]) auf „HTML5” umgesetzt und neu gestaltet ⇒ Applet-Variante 1. | *2017 wurde dieses Programm von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#David_Jobst_.28Ingenieurspraxis_Math_2017.29|David Jobst]] im Rahmen seiner Ingenieurspraxis (Betreuer: [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]]) auf „HTML5” umgesetzt und neu gestaltet ⇒ Applet-Variante 1. | ||
*Parallel dazu erarbeitete [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Bastian_Siebenwirth_.28Bachelorarbeit_LB_2017.29|Bastian Siebenwirth]] im Rahmen seiner Bachelorarbeit (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]) die HTML5-Variante 2. | *Parallel dazu erarbeitete [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Bastian_Siebenwirth_.28Bachelorarbeit_LB_2017.29|Bastian Siebenwirth]] im Rahmen seiner Bachelorarbeit (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]) die HTML5-Variante 2. | ||
+ | Translated with www.DeepL.com/Translator (free version) | ||
==Once again: Open Applet in new Tab== | ==Once again: Open Applet in new Tab== |
Revision as of 14:21, 19 November 2020
Open Applet in a new tab Version with Exercises and Solutions in German
Contents
Applet Descripition
This applet draws the course and calculates the period duration $T_0$ of the periodic function
- $$x(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right).$$
Please note:
- The phases $\varphi_i$ must be entered here in radians. Conversion from the input value: $\varphi_i \text{[in radians]} =\varphi_i \text{[in degrees]}/360 \cdot 2\pi$.
- The maximum value $x_{\rm max}$ and a signal value $x(t_*)$ at a given time $t_*$ are also output.
Theoretical background
A periodic signal $x(t)$ is present exactly when it is not constant and for all arbitrary values of $t$ and all integer values of $i$ with an appropriate $T_{0}$ applies: $x(t+i\cdot T_{0}) = x(t).$
- $T_0$ is called the period duration and $f_0 = 1/T_0$ the basic frequency.
- For a harmonic oscillation $x_1(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)$ applies $f_0 = f_1$ and $T_0 = 1/f_1$, independent of the phase $\varphi_1$ and the amplitude $A_1 \ne 0$.
$\text{Calculation Rule: }$ If the periodic signal $x(t)$ consists of two parts $x_1(t)$ and $x_2(t)$ like in this applet, then applies for the basic frequency and the period duration with $A_1 \ne 0$, $f_1 \ne 0$, $A_2 \ne 0$, $f_2 \ne 0$:
- $$f_0 = {\rm gcd}(f_1, \ f_2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}T_0 = 1/f_0.$$
Here $\rm gcd$ denotes the greatest common divisor.
$\text{Beispiele:}$ Im Folgenden bezeichnen $f_0'$, $f_1'$ und $f_2'$ die auf $1\ \rm kHz$ normierten Signalfrequenzen:
(a) $f_1' = 1.0$, $f_2' = 3.0$ ⇒ $f_0' = {\rm ggt}(1.0, \ 3.0) = 1.0$ ⇒ $T_0 = 1.0\ \rm ms$;
(b) $f_1' = 1.0$, $f_2' = 3.5$ ⇒ $f_0' = {\rm ggt}(1.0, \ 3.5)= 0.5$ ⇒ $T_0 = 2.0\ \rm ms$;
(c) $f_1' = 1.0$, $f_2' = 2.5$ ⇒ $f_0' = {\rm ggt}(1.0, \ 2.5) = 0.5$ ⇒ $T_0 = 2.0\ \rm ms$;
(d) $f_1' = 0.9$, $f_2' = 2.5$ ⇒ $f_0' = {\rm ggt}(0.9, \ 2.5) = 0.1$ ⇒ $T_0 = 10.0 \ \rm ms$;
(e) $f_2' = \sqrt{2} \cdot f_1' $ ⇒ $f_0' = {\rm ggt}(f_1', \ f_2') \to 0$ ⇒ $T_0 \to \infty$ ⇒ Das Signal $x(t)$ ist nicht periodisch.
$\text{Anmerkung:}$ Die Periodendauer könnte auch als kleinstes gemeinsame Vielfache (kgV) entsprechend $T_0 = {\rm kgV}(T_1, \ T_2)$ ermittelt werden:
(c) $T_1 = 1.0\ \rm ms$, $T_2 = 0.4\ \rm kHz$ ⇒ $T_0 = {\rm kgV}(1.0, \ 0.4) \ \rm ms = 2.0\ \rm ms$
Bei allen anderen Parameterwerten würde es aber zu numerischen Problemen kommen, zum Beispiel
(a) $T_1 = 1.0\ \rm ms$ und $T_2 = 0.333\text{...} \ \rm ms$ besitzen aufgrund der begrenzten Darstellung reeller Zahlen kein kleinstes gemeinsames Vielfaches.
Exercises
- First select the number (1, 2, ... ) of the exercise.
- An exercise description is displayed. Parameter values are adjusted.
- Solution after pressing "Show solution".
- The number 0 corresponds to a "Reset": Same setting as at the program start.
- $A_1'$ and $A_2'$ denote the signal amplitudes normalized to $1\ \rm V$.
- $f_0'$, $f_1'$ and $f_2'$ are the frequencies normalized to $1\ \rm kHz$.
(1) Consider $A_1' = 1.0, \ A_2' = 0.5, \ f_1' = 2.0, \ f_2' = 2.5, \ \varphi_1 = 0^\circ \ \varphi_2 = 90^\circ$. How large is the period $T_0$?
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period is $T_0 = 2.0 \ \rm ms$ due to $\rm{gcd}(2.0, 2.5) = 0.5$.
(2) Vary $\varphi_1$ and $\varphi_2$ in the whole possible range $\pm 180^\circ$. How does this affect the period $T_0$?
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period $T_0 = 2.0 \ \rm ms$ remains the same for all $\varphi_1$ and $\varphi_2$.
(3) Select the default setting ⇒ "Recall Parameters". Vary $A_1'$ in the entire possible range $0 \le A_1' \le 1$.
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period $T_0 = 2.0 \ \rm ms$ remains the same with the exception of $A_1' =0$. In the latter case: $T_0 = 0.4 \ \rm ms$.
(4) Choose the default setting ⇒ "Recall Parameters" and vary $f_2'$. Does this affect $T_0$? Which value is the result for $f_2' = 0.2$?
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period jumps back and forth. For $f_2' = 0.2$ the result is $T_0 = 5.0 \ \rm ms$ because of $\ \rm{gcd} (2.0,0.2)=0.2$. .
(5) Consider $A_1' = 1.0, \ A_2' = 0.5, \ f_1' = 0.2, \ f_2' = 2.5, \ \varphi_1 = 0^\circ \ \varphi_2 = 90^\circ$. How large is the period $T_0$? Save this setting with "Store Parameters".
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period is $T_0 = 10.0 \ \rm ms$ due to $\rm{gcd}(0.2, 2.5) = 0.1$.
(6) Select the last setting ⇒ "Recall Parameters" and change $f_2' = 0.6$. Save this setting with "Store Parameters".
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period is $T_0 = 5.0 \ \rm ms$ due to $\rm{gcd}(0.2,0.6) = 0.2$.
(7) How large is the maximum signal value $x_{\rm max}$ with the same settings?`
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$ $x_{\rm max} =x(t_* + i \cdot T_0) = 1.38 \ {\rm V} < A_1 + A_2$ with $t_* = 0.3 \ \rm ms$ and $T_0 = 5.0 \ \rm ms$.
(8) What changes with $\varphi_2 = 0^\circ$ ⇒ Sum of two cosine waves?
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$ $t_* = 0$, $T_0 = 5.0 \ \rm ms$ ⇒ $x_{\rm max} =x(t_* + i \cdot T_0) = 1.5 \ {\rm V}=A_1 + A_2$.
(9) Now consider $\varphi_1 = \varphi_2 = 90^\circ$ ⇒ Sum of two sine waves?
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The maximum signal value is now $x_{\rm{max}} = 1.07 \ \rm V < A_1 + A_2$. This value results from $T_0 = 5.0 \ \rm ms$ and $t_* = 0.6 \ \rm ms$ or $t_* = 1.9 \ \rm ms$.
Applet Manual
(A) Parametereingabe per Slider
(B) Bereich der graphischen Darstellung
(C) Variationsmöglichkeit für die graphische Darstellung
(D) Abspeichern und Zurückholen von Parametersätzen
(E) Numerikausgabe des Hauptergebnisses $T_0$; graphische Verdeutlichung durch rote Linie
(F) Ausgabe von $x_{\rm max}$ und der Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$
(G) Darstellung der Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$ durch grüne Punkte
(H) Einstellung der Zeit $t_*$ für die Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$
Details zum obigen Punkt (C)
(*) Zoom–Funktionen „$+$” (Vergrößern), „$-$” (Verkleinern) und $\rm o$ (Zurücksetzen)
(*) Verschieben mit „$\leftarrow$” (Ausschnitt nach links, Ordinate nach rechts), „$\uparrow$” „$\downarrow$” und „$\rightarrow$”
Andere Möglichkeiten:
(*) Gedrückte Shifttaste und Scrollen: Zoomen im Koordinatensystem,
(*) Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems.
About the Authors
Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.
- Die erste Version wurde 2004 von Ji Li im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: Günter Söder ).
- 2017 wurde dieses Programm von David Jobst im Rahmen seiner Ingenieurspraxis (Betreuer: Tasnád Kernetzky) auf „HTML5” umgesetzt und neu gestaltet ⇒ Applet-Variante 1.
- Parallel dazu erarbeitete Bastian Siebenwirth im Rahmen seiner Bachelorarbeit (Betreuer: Günter Söder) die HTML5-Variante 2.
Translated with www.DeepL.com/Translator (free version)
Once again: Open Applet in new Tab
Open Applet in a new tab
Version with Exercises and Solutions in German