Difference between revisions of "Signal Representation/Analytical Signal and its Spectral Function"

From LNTwww
Line 43: Line 43:
  
  
==Allgemeingültige Berechnungsvorschrift im Zeitbereich==
+
==Calculation Procedure in The Time Domain==
 
<br>
 
<br>
 
[[File:Sig_T_4_2_S2a_Version2.png|right|frame|To Derive the Analytical Signal]]
 
[[File:Sig_T_4_2_S2a_Version2.png|right|frame|To Derive the Analytical Signal]]
Line 51: Line 51:
  
 
If one considers the nbsp; [[Signal_Representation/Fourier_Transform_Laws#Zuordnungssatz|Mapping Theorem]]&nbsp; of the Fourier transform, then the following statements are possible on the basis of the graphic:
 
If one considers the nbsp; [[Signal_Representation/Fourier_Transform_Laws#Zuordnungssatz|Mapping Theorem]]&nbsp; of the Fourier transform, then the following statements are possible on the basis of the graphic:
*Der gerade Anteil&nbsp; $X_{\rm +g}(f)$&nbsp; von&nbsp; $X_{+}(f)$&nbsp; führt nach der Fouriertransformation zu einem reellen Zeitsignal, der ungerade Anteil&nbsp; $X_{\rm +u}(f)$&nbsp; zu einem imaginären.
+
*The even part&nbsp; $X_{\rm +g}(f)$&nbsp; of&nbsp; $X_{+}(f)$&nbsp; leads after the Fourier transformation to a real time signal, the odd part&nbsp; $X_{\rm +u}(f)$&nbsp; to an imaginary one.
*Es ist offensichtlich, dass&nbsp; $X_{\rm +g}(f)$&nbsp; gleich dem tatsächlichen Fourierspektrum&nbsp; $X(f)$&nbsp; und damit der Realteil von&nbsp; $x_{\rm +g}(t)$&nbsp; gleich dem vorgegebenen Signal&nbsp; $x(t)$&nbsp; mit Bandpasseigenschaften ist.
+
*It is obvious that&nbsp; $X_{\rm +g}(f)$&nbsp; is equal to the actual Fourier spectrum&nbsp; $X(f)$&nbsp; and thus the real part of&nbsp; $x_{\rm +g}(t)$&nbsp; is equal to the given signal&nbsp; $x(t)$&nbsp; with bandpass properties.
*Bezeichnen wir den Imaginärteil mit&nbsp; $y(t)$, so lautet das analytische Signal:
+
*If we denote the imaginary part with&nbsp; $y(t)$, the analytical signal is:
 
:$$x_+(t)= x(t) + {\rm j} \cdot y(t) .$$
 
:$$x_+(t)= x(t) + {\rm j} \cdot y(t) .$$
*Nach den allgemein gültigen Gesetzen der Fouriertransformation entsprechend dem&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Zuordnungssatz|Zuordnungssatz]]&nbsp; gilt somit für die Spektralfunktion des Imaginärteils:
+
*According to the generally valid laws of Fourier transform corresponding to the&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Zuordnungssatz|Mapping Theorem]]&nbsp;, the following applies to the spectral function of the imaginary part:
 
:$${\rm j} \cdot Y(f) = X_{\rm +u}(f)= {\rm sign}(f) \cdot X(f)
 
:$${\rm j} \cdot Y(f) = X_{\rm +u}(f)= {\rm sign}(f) \cdot X(f)
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}Y(f) = \frac{{\rm
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}Y(f) = \frac{{\rm
 
sign}(f)}{ {\rm j}}\cdot X(f).$$
 
sign}(f)}{ {\rm j}}\cdot X(f).$$
*Transformiert man diese Gleichung in den Zeitbereich, so wird aus der Multiplikation die&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation|Faltungsoperation]], und man erhält:
+
*If one transforms this equation into the time domain, the multiplication becomes the&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation|convolution]], and one gets:
 
:$$y(t) = \frac{1}{ {\rm \pi} t} \hspace{0.05cm}\star
 
:$$y(t) = \frac{1}{ {\rm \pi} t} \hspace{0.05cm}\star
 
\hspace{0.05cm}x(t) = \frac{1}{ {\rm \pi}} \cdot
 
\hspace{0.05cm}x(t) = \frac{1}{ {\rm \pi}} \cdot
Line 65: Line 65:
 
\tau}}\hspace{0.15cm} {\rm d}\tau.$$
 
\tau}}\hspace{0.15cm} {\rm d}\tau.$$
  
==Darstellung mit der Hilberttransformation==
+
==Representation with Hilbert Transform==
 
<br>
 
<br>
An dieser Stelle ist es erforderlich, kurz auf eine weitere Spektraltransformation einzugehen, die im Buch&nbsp; [[Linear_and_Time_Invariant_Systems/Folgerungen_aus_dem_Zuordnungssatz#Hilbert.E2.80.93Transformation|Lineare zeitinvariante Systeme]]&nbsp; noch eingehend behandelt wird.
+
At this point it is necessary to briefly discuss a further spectral transformation, which is dealt thoroughly in the book [[Linear_and_Time_Invariant_Systems/Folgerungen_aus_dem_Zuordnungssatz#Hilbert.E2.80.93Transformation|Linear and Time Invariant Systems Systeme]]&nbsp;.
 
 
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Für die&nbsp; '''Hilberttransformierte'''&nbsp; $ {\rm H}\left\{x(t)\right\}$&nbsp; einer Zeitfunktion&nbsp; $x(t)$&nbsp; gilt:
+
$\text{Definition:}$&nbsp; FFor the&nbsp; '''Hilbert transformed''' &nbsp; $ {\rm H}\left\{x(t)\right\}$&nbsp; a time function&nbsp; $x(t)$&nbsp; applies:
 
   
 
   
 
:$$y(t) = {\rm H}\left\{x(t)\right\} = \frac{1}{ {\rm \pi} } \cdot
 
:$$y(t) = {\rm H}\left\{x(t)\right\} = \frac{1}{ {\rm \pi} } \cdot
Line 76: Line 75:
 
\tau} }\hspace{0.15cm} {\rm d}\tau.$$
 
\tau} }\hspace{0.15cm} {\rm d}\tau.$$
  
*Dieses bestimmte Integral ist nicht auf einfache, herkömmliche Art lösbar, sondern muss mit Hilfe des&nbsp; [https://de.wikipedia.org/wiki/Cauchyscher_Hauptwert Cauchy–Hauptwertsatzes]&nbsp; ausgewertet werden.  
+
*This particular integral cannot be solved in a simple, conventional way, but must be evaluated using the&nbsp; [https://en.wikipedia.org/wiki/Cauchy_principal_value principal value of Cauchy]&nbsp;.
  
*Entsprechend gilt im Frequenzbereich:
+
*Correspondingly valid in the frequency domain:
 
   
 
   
 
:$$Y(f) = - {\rm j} \cdot {\rm sign}(f) \cdot X(f) \hspace{0.05cm} .$$}}
 
:$$Y(f) = - {\rm j} \cdot {\rm sign}(f) \cdot X(f) \hspace{0.05cm} .$$}}
  
  
Das Ergebnis der letzten Seite lässt sich mit dieser Definition wie folgt zusammenfassen:
+
The result of the last page can be summarized with this definition as follows:
*Man erhält aus dem realen, physikalischen Bandpass–Signal&nbsp; $x(t)$&nbsp; das analytische Signal&nbsp; $x_+(t)$, indem man zu&nbsp; $x(t)$&nbsp; einen Imaginärteil entsprechend der Hilberttransformierten hinzufügt:
+
*You get from the real, physical bandpass signal&nbsp; $x(t)$&nbsp; the analytic signal&nbsp; $x_+(t)$ by adding to&nbsp; $x(t)$&nbsp; an imaginary part according to the Hilbert transform:
 
   
 
   
 
:$$x_+(t) = x(t)+{\rm j} \cdot {\rm H}\left\{x(t)\right\} .$$
 
:$$x_+(t) = x(t)+{\rm j} \cdot {\rm H}\left\{x(t)\right\} .$$
  
*Die Hilberttransformierte&nbsp; $\text{H}\{x(t)\}$&nbsp; verschwindet nur für den Fall&nbsp; $x(t) = \rm const.$ &nbsp; &rArr; &nbsp; Gleichsignal  Bei allen anderen Signalformen ist das analytische Signal&nbsp; $x_+(t)$&nbsp; somit stets komplex.
+
*The Hilbert transformed&nbsp; $\text{H}\{x(t)\}$&nbsp; disappears only in the case of&nbsp; $x(t) = \rm const.$ &nbsp; &rArr; &nbsp; DC signal With all other signal forms the analytic signal&nbsp; $x_+(t)$&nbsp; is therefore always complex.
*Aus dem analytischen Signal&nbsp; $x_+(t)$&nbsp; kann das reale Bandpass–Signal in einfacher Weise durch Realteilbildung ermittelt werden:
+
*From the analytical signal&nbsp; $x_+(t)$&nbsp; the real bandpass signal can be easily determined by real part formation:
 
:$$x(t) = {\rm Re}\left\{x_+(t)\right\} .$$
 
:$$x(t) = {\rm Re}\left\{x_+(t)\right\} .$$
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp; Das Prinzip der Hilbert–Transformation wird durch die folgende Grafik nochmals verdeutlicht:  
+
$\text{Example 2:}$&nbsp; The principle of the Hilbert transformation is illustrated again by the following diagram:  
*Nach der linken Darstellung&nbsp; $\rm (A)$&nbsp; kommt man vom physikalischen Signal&nbsp; $x(t)$&nbsp; zum analytischen Signal&nbsp; $x_+(t)$, indem man einen Imaginärteil&nbsp; ${\rm j} \cdot y(t)$&nbsp; hinzufügt.  
+
**According to the left representation&nbsp; $\rm (A)$&nbsp; ,one gets an analytical signal&nbsp; $x_+(t)$ from the physical signal&nbsp; $x(t)$&nbsp;  by adding an imaginary part &nbsp; ${\rm j} \cdot y(t)$&nbsp;.  
*Hierbei ist&nbsp; $y(t) = {\rm H}\left\{x(t)\right\}$&nbsp; eine reelle Zeitfunktion, die sich am einfachsten im Spektralbereich durch die Multiplikation des Spektrums&nbsp; $X(f)$&nbsp; mit&nbsp; $- {\rm j} \cdot \sign(f)$&nbsp; angeben lässt.
+
*Here &nbsp; $y(t) = {\rm H}\left\{x(t)\right\}$&nbsp; is a real time function, which can be calculated easily in the spectral range by multiplying the spectrum&nbsp; $X(f)$&nbsp; with&nbsp; $- {\rm j} \cdot \sign(f)$&nbsp;.
  
[[File:P_ID2729__Sig_T_4_2_S2b_neu.png|center|frame|Zur Verdeutlichung der Hilbert–Transformierten]]
+
[[File:P_ID2729__Sig_T_4_2_S2b_neu.png|center|frame|On the Illustration of the Hilbert Transformed]]
  
Die rechte Darstellung&nbsp; $\rm (B)$&nbsp; ist äquivalent zu&nbsp; $\rm (A)$:  
+
The right representation&nbsp; $\rm (B)$&nbsp; is equivalent to&nbsp; $\rm (A)$:  
*Nun gilt&nbsp; $x_+(t) = x(t) + z(t)$&nbsp; mit der rein imaginären Funktion&nbsp; $z(t)$.  
+
*Now applies&nbsp; $x_+(t) = x(t) + z(t)$&nbsp; with the purely imaginary function&nbsp; $z(t)$.  
*Ein Vergleich der beiden Bilder zeigt, dass tatsächlich&nbsp; $z(t) = {\rm j} \cdot y(t)$&nbsp; ist.}}
+
*A comparison of the two images shows that actually&nbsp; $z(t) = {\rm j} \cdot y(t)$&nbsp; is valid.}
  
  
==Zeigerdiagrammdarstellung der harmonischen Schwingung==
+
==Vector Diagram Representation of The Harmonic Oscillation==
 
<br>
 
<br>
Die Spektralfunktion&nbsp; $X(f)$&nbsp; einer harmonischen Schwingung&nbsp; $x(t) = A \cdot \text{cos}(2\pi f_{\rm T}t - \varphi)$&nbsp; besteht bekanntlich aus zwei Diracfunktionen bei den Frequenzen
+
The spectral function&nbsp; $X(f)$&nbsp; of a harmonic oscillation&nbsp; $x(t) = A \cdot \text{cos}(2\pi f_{\rm T}t - \varphi)$&nbsp; consists of two Dirac functions at the frequencies
* $+f_{\rm T}$&nbsp; mit dem komplexen Gewicht&nbsp; $A/2 \cdot \text{e}^{-\text{j}\hspace{0.05cm}\varphi}$,
+
* $+f_{\rm T}$&nbsp; with the complex weight &nbsp; $A/2 \cdot \text{e}^{-\text{j}\hspace{0.05cm}\varphi}$,
* $-f_{\rm T}$&nbsp; mit dem komplexen Gewicht&nbsp; $A/2 \cdot \text{e}^{+\text{j}\hspace{0.05cm}\varphi}$.
+
* $-f_{\rm T}$&nbsp; with the complex weight &nbsp; $A/2 \cdot \text{e}^{+\text{j}\hspace{0.05cm}\varphi}$.
  
  
Somit lautet das Spektrum des analytischen Signals&nbsp; $($also ohne die Diracfunktion bei der Frequenz&nbsp; $f =-f_{\rm T})$:
+
Thus, the spectrum of the analytical signal is&nbsp; $($without the Dirac function at the frequency&nbsp; $f =-f_{\rm T})$:
  
 
:$$X_+(f) = A \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\varphi}\cdot\delta (f - f_{\rm
 
:$$X_+(f) = A \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\varphi}\cdot\delta (f - f_{\rm
 
T}) .$$
 
T}) .$$
 
   
 
   
Die dazugehörige Zeitfunktion erhält man durch Anwendung des&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|Verschiebungssatzes]]:
+
The corresponding time function is obtained by applying the&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|Shifting Theorem]]:
 
   
 
   
 
:$$x_+(t) = A \cdot {\rm e}^{\hspace{0.05cm} {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}( 2 \pi f_{\rm T} t
 
:$$x_+(t) = A \cdot {\rm e}^{\hspace{0.05cm} {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}( 2 \pi f_{\rm T} t
 
\hspace{0.05cm}-\hspace{0.05cm} \varphi)}.$$
 
\hspace{0.05cm}-\hspace{0.05cm} \varphi)}.$$
  
Diese Gleichung beschreibt einen mit konstanter Winkelgeschwindigkeit&nbsp; $\omega_{\rm T} = 2\pi f_{\rm T}$&nbsp; drehenden Zeiger.  
+
This equation describes a rotating pointer with constant angular velocity&nbsp; $\omega_{\rm T} = 2\pi f_{\rm T}$&nbsp;.
 
 
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 3:}$&nbsp; Aus Darstellungsgründen ist in der folgenden Grafik das Koordinatensystem entgegen der üblichen Darstellung um&nbsp; $90^\circ$&nbsp; nach links gedreht (Realteil nach oben, Imaginärteil nach links).
+
$\text{Example 3:}$&nbsp; For illustrative reasons the coordinate system in the following figure is rotated to the left (real part up, imaginary part to the left), contrary to the usual representation by&nbsp; $90^\circ$&nbsp.
  
[[File:P_ID712__Sig_T_4_2_S3.png|center|frame|Zeigerdiagramm einer harmonischen Schwingung]]
+
[[File:P_ID712__Sig_T_4_2_S3.png|center|frame|Vector Diagram of a Harmonic Oscillation]]
  
 
Anhand dieser Grafik sind folgende Aussagen möglich:
 
Anhand dieser Grafik sind folgende Aussagen möglich:
*Zum Startzeitpunkt&nbsp; $t = 0$&nbsp; liegt der Zeiger der Länge&nbsp; $A$&nbsp; (Signalamplitude) mit dem Winkel&nbsp; $-\varphi$&nbsp; in der komplexen Ebene. Im gezeichneten Beispiel gilt&nbsp; $\varphi = 45^\circ$.
+
On the basis of this diagram the following statements are possible:
*Für Zeiten&nbsp; $t > 0$&nbsp; dreht der Zeiger mit konstanter Winkelgeschwindigkeit (Kreisfrequenz)&nbsp; $\omega_{\rm T}$&nbsp; in mathematisch positiver Richtung, das heißt entgegen dem Uhrzeigersinn.
+
*At the start time&nbsp; $t = 0$&nbsp; the pointer of length&nbsp; $A$&nbsp; (signal amplitude) lies with angle&nbsp; $-\varphi$&nbsp; in the complex plane. In the drawn example,&nbsp; $\varphi = 45^\circ$.
*Die Spitze des Zeigers liegt somit stets auf einem Kreis mit Radius&nbsp; $A$&nbsp; und benötigt für eine Umdrehung genau die Zeit&nbsp; $T_0$, also die Periodendauer der harmonischen Schwingung&nbsp; $x(t)$.
+
*For the times&nbsp; $t > 0$&nbsp; the pointer rotates with constant angular velocity (angular frequency)&nbsp; $\omega_{\rm T}$&nbsp; in mathematically positive direction, i.e. counterclockwise.
*Die Projektion des analytischen Signals&nbsp; $x_+(t)$&nbsp; auf die reelle Achse, durch rote Punkte markiert, liefert die Augenblickswerte von&nbsp; $x(t)$.}}
+
*The top of the pointer thus always lies on a circle with radius&nbsp; $A$&nbsp; and requires exactly the time&nbsp; $T_0$, i.e. the period of the harmonic oscillation&nbsp; $x(t)$ for one rotation.
 +
*The projection of the analytical signal&nbsp; $x_+(t)$&nbsp; onto the real axis, marked by red dots, provides the instantaneous values of&nbsp; $x(t)$.}}
  
  
  
==Zeigerdiagramm einer Summe harmonischer Schwingungen==
+
==Vector Diagram  of a Sum of Harmonic Oscillations==
 
<br>
 
<br>
Für die weitere Beschreibung gehen wir  für das analytische Signal von folgendem Spektrum aus:
+
For further description we assume the following spectrum for the analytical signal:
 
   
 
   
 
:$$X_+(f) = \sum_{i=1}^{I}A_i \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}
 
:$$X_+(f) = \sum_{i=1}^{I}A_i \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}
 
\varphi_i}\cdot\delta (f - f_{i}) .$$
 
\varphi_i}\cdot\delta (f - f_{i}) .$$
  
Das linke Bild zeigt ein solches Spektrum für das Beispiel&nbsp; $I = 3$. Wählt man&nbsp; $I$&nbsp; relativ groß und den Abstand zwischen benachbarten Spektrallinien entsprechend klein, so können mit obiger Gleichung auch (frequenz&ndash;) kontinuierliche Spektralfunktionen&nbsp; $X_+(f)$&nbsp; angenähert werden.
+
The left image shows such a spectrum for the example&nbsp; $I = 3$. If one chooses&nbsp; $I$&nbsp; relatively large and the distance between adjacent spectral lines correspondingly small, then (frequency&ndash;) continuous spectral functions&nbsp; $X_+(f)$&nbsp; can also be approximated with the above equation.
  
[[File:P_ID715__Sig_T_4_2_S4.png|center|frame|Zeigerdiagramm eines Verbundes aus drei Schwingungen]]
+
[[File:P_ID715__Sig_T_4_2_S4.png|center|frame|Vector Diagram  of a Sum of 3 Oscillations]]
  
Im rechten Bild ist die dazugehörige Zeitfunktion angedeutet. Diese lautet allgemein:
+
In the right picture the corresponding time function is indicated. This is in general:
 
   
 
   
 
:$$x_+(t) = \sum_{i=1}^{I}A_i \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}(\omega_i
 
:$$x_+(t) = \sum_{i=1}^{I}A_i \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}(\omega_i
 
\hspace{0.05cm}\cdot\hspace{0.05cm} t \hspace{0.05cm}-\hspace{0.05cm} \varphi_i)}.$$
 
\hspace{0.05cm}\cdot\hspace{0.05cm} t \hspace{0.05cm}-\hspace{0.05cm} \varphi_i)}.$$
  
Zu dieser Grafik anzumerken:
+
To note about this graphic:
*Die Skizze zeigt die Ausgangslage der Zeiger zum Startzeitpunkt&nbsp; $t = 0$&nbsp; entsprechend den Amplituden&nbsp; $A_i$&nbsp; und den Phasenlagen&nbsp; $\varphi_i$.
+
*The sketch shows the initial position of the pointers at the start time&nbsp; $t = 0$&nbsp; corresponding to the amplitudes&nbsp; $A_i$&nbsp; and the phase positions&nbsp; $\varphi_i$.
*Die Spitze des resultierenden Zeigerverbundes ist durch das violette Kreuz markiert. Man erhält durch vektorielle Addition der drei Einzelzeiger für den Zeitpunkt&nbsp; $t = 0$:
+
*The tip of the resulting pointer compound is marked by the violet cross. One obtains by vectorial addition of the three individual pointers for the time&nbsp; $t = 0$:
 
:$$x_+(t= 0) = \big [1 \cdot \cos(60^\circ) - 1  \cdot {\rm j} \cdot \sin(60^\circ) \big ]+ 2 \cdot \cos(0^\circ)+1 \cdot \cos(180^\circ) = 1.500 - {\rm j} \cdot 0.866.$$
 
:$$x_+(t= 0) = \big [1 \cdot \cos(60^\circ) - 1  \cdot {\rm j} \cdot \sin(60^\circ) \big ]+ 2 \cdot \cos(0^\circ)+1 \cdot \cos(180^\circ) = 1.500 - {\rm j} \cdot 0.866.$$
*Für Zeiten&nbsp; $t > 0$&nbsp; drehen die drei Zeiger mit unterschiedlichen Winkelgeschwindigkeiten&nbsp; $\omega_i = 2\pi f_i$. Der rote Zeiger dreht schneller als der grüne, aber langsamer als der blaue Zeiger.
+
*For times&nbsp; $t > 0$&nbsp; the three pointers rotate at different angular speeds&nbsp; $\omega_i = 2\pi f_i$. The red hand rotates faster than the green hand, but slower than the blue hand.
*Da alle Zeiger entgegen dem Uhrzeigersinn drehen, wird sich auch der resultierende Zeiger&nbsp; $x_+(t)$&nbsp; tendenziell in diese Richtung bewegen. Zum Zeitpunkt&nbsp; $t = 1\,&micro;\text {s}$&nbsp; liegt die Spitze des resultierenen Zeigers für die gegebenen Parameterwerte bei
+
*Since all hands rotate counterclockwise, the resulting hand&nbsp; $x_+(t)$&nbsp; will also tend to move in this direction. At time&nbsp; $t = 1\,&micro;\text {s}$&nbsp; the peak of the resulting pointer for the given parameter values is
 +
 
 
:$$ \begin{align*}x_+(t = 1 {\rm \hspace{0.05cm}&micro; s}) & =  1 \cdot {\rm e}^{-{\rm
 
:$$ \begin{align*}x_+(t = 1 {\rm \hspace{0.05cm}&micro; s}) & =  1 \cdot {\rm e}^{-{\rm
 
j}\hspace{0.05cm}\cdot \hspace{0.05cm}60^\circ}\cdot {\rm e}^{{\rm
 
j}\hspace{0.05cm}\cdot \hspace{0.05cm}60^\circ}\cdot {\rm e}^{{\rm
Line 171: Line 171:
 
e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}21.6^\circ} \approx
 
e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}21.6^\circ} \approx
 
1.673- {\rm j} \cdot 0.464.\end{align*}$$
 
1.673- {\rm j} \cdot 0.464.\end{align*}$$
*Die resultierende Zeigerspitze liegt nun aber nicht wie bei einer einzigen Schwingung auf einem Kreis, sondern es entsteht eine komplizierte geometrische Figur.
+
*The resulting pointer tip does not lie on a circle like a single oscillation, but a complicated geometric figure is created.
 
 
  
Das interaktive Applet&nbsp; [[Applets:Physikalisches_Signal_%26_Analytisches_Signal|Physikalisches Signal & Analytisches Signal]]&nbsp; verdeutlicht&nbsp; $x_+(t)$&nbsp; für die Summe dreier harmonischer Schwingungen.
 
  
 +
The  interactive applet&nbsp; [[Applets:Physikalisches_Signal_%26_Analytisches_Signal|Physical Signal & Analytical Signal]]&nbsp; illustrates&nbsp; $x_+(t)$&nbsp; for the sum of three harmonic oscillations.
  
==Aufgaben zum Kapitel==
+
==Exercises for the Chapter==
 
<br>
 
<br>
 
[[Aufgaben:Exercise 4.3: Vector Diagram Representation|Exercise 4.3: Vector Diagram Representation]]
 
[[Aufgaben:Exercise 4.3: Vector Diagram Representation|Exercise 4.3: Vector Diagram Representation]]

Revision as of 16:11, 26 November 2020

Definition in the Frequency Domain


We consider a real bandpass-like signal  $x(t)$  with the corresponding bandpass spectrum  $X(f)$, which has an even real and an odd imaginary part with respect to the frequency zero point. It is assumed that the carrier frequency  $f_{\rm T}$  is much larger than the bandwidth of the bandpass signal  $x(t)$ .

$\text{Definition:}$  The time function belonging to the physical signal  $x(t)$  analytical signal  $x_+(t)$  is that time function, whose spectrum fulfills the following property

Analytical Signal in the Frequency Domain
$$X_+(f)=\big[1+{\rm sign}(f)\big] \cdot X(f) = \left\{ {2 \cdot X(f) \; \hspace{0.2cm}\rm for\hspace{0.2cm} {\it f} > 0, \atop {\,\,\,\, \rm 0 \; \hspace{0.9cm}\rm for\hspace{0.2cm} {\it f} < 0.} }\right.$$

The so called „signum function” is for positive values of  $f$  equal to  $+1$  and for negative  $f$-values equal to  $-1$.

  • The (double sided) limit value returns  $\sign(0) = 0$.
  • The index "+" should make clear that  $X_+(f)$  has only parts at positive frequencies.


From the graphic you can see the calculation rule for  $X_+(f)$:

The actual bandpass spectrum  $X(f)$  will

  • doubled at the positive frequencies, and
  • set to zero at the negative frequencies.


Example of a Spectrum of an Analytical Signal

$\text{Example 1:}$ 

The graphic

  • at left shows the (complex) spectrum  $X(f)$  of the bandpass signal
$$x(t) = 4\hspace{0.05cm}{\rm V} \cdot {\cos} ( 2 \pi f_{\rm u} \hspace{0.03cm}t) + 6\hspace{0.05cm}{\rm V} \cdot {\sin} ( 2 \pi f_{\rm o} \hspace{0.03cm}t).$$
  • and on the right the (complex) spectrum of the analytical signal  $x_{+}(t)$.


Calculation Procedure in The Time Domain


To Derive the Analytical Signal

Now we will take a closer look at the spectrum  $X_+(f)$  of the analytical signal and divide it into a with respect to  $f = 0$  even part  $X_{\rm +g}(f)$  and an odd part  $X_{\rm +u}(f)$ :

$$X_+(f) = X_{\rm +g}(f) + X_{\rm +u}(f).$$

All these spectra are generally complex.

If one considers the nbsp; Mapping Theorem  of the Fourier transform, then the following statements are possible on the basis of the graphic:

  • The even part  $X_{\rm +g}(f)$  of  $X_{+}(f)$  leads after the Fourier transformation to a real time signal, the odd part  $X_{\rm +u}(f)$  to an imaginary one.
  • It is obvious that  $X_{\rm +g}(f)$  is equal to the actual Fourier spectrum  $X(f)$  and thus the real part of  $x_{\rm +g}(t)$  is equal to the given signal  $x(t)$  with bandpass properties.
  • If we denote the imaginary part with  $y(t)$, the analytical signal is:
$$x_+(t)= x(t) + {\rm j} \cdot y(t) .$$
  • According to the generally valid laws of Fourier transform corresponding to the  Mapping Theorem , the following applies to the spectral function of the imaginary part:
$${\rm j} \cdot Y(f) = X_{\rm +u}(f)= {\rm sign}(f) \cdot X(f) \hspace{0.3cm}\Rightarrow\hspace{0.3cm}Y(f) = \frac{{\rm sign}(f)}{ {\rm j}}\cdot X(f).$$
  • If one transforms this equation into the time domain, the multiplication becomes the  convolution, and one gets:
$$y(t) = \frac{1}{ {\rm \pi} t} \hspace{0.05cm}\star \hspace{0.05cm}x(t) = \frac{1}{ {\rm \pi}} \cdot \hspace{0.03cm}\int_{-\infty}^{+\infty}\frac{x(\tau)}{ {t - \tau}}\hspace{0.15cm} {\rm d}\tau.$$

Representation with Hilbert Transform


At this point it is necessary to briefly discuss a further spectral transformation, which is dealt thoroughly in the book Linear and Time Invariant Systems Systeme .

$\text{Definition:}$  FFor the  Hilbert transformed   $ {\rm H}\left\{x(t)\right\}$  a time function  $x(t)$  applies:

$$y(t) = {\rm H}\left\{x(t)\right\} = \frac{1}{ {\rm \pi} } \cdot \hspace{0.03cm}\int_{-\infty}^{+\infty}\frac{x(\tau)}{ {t - \tau} }\hspace{0.15cm} {\rm d}\tau.$$
  • This particular integral cannot be solved in a simple, conventional way, but must be evaluated using the  principal value of Cauchy .
  • Correspondingly valid in the frequency domain:
$$Y(f) = - {\rm j} \cdot {\rm sign}(f) \cdot X(f) \hspace{0.05cm} .$$


The result of the last page can be summarized with this definition as follows:

  • You get from the real, physical bandpass signal  $x(t)$  the analytic signal  $x_+(t)$ by adding to  $x(t)$  an imaginary part according to the Hilbert transform:
$$x_+(t) = x(t)+{\rm j} \cdot {\rm H}\left\{x(t)\right\} .$$
  • The Hilbert transformed  $\text{H}\{x(t)\}$  disappears only in the case of  $x(t) = \rm const.$   ⇒   DC signal With all other signal forms the analytic signal  $x_+(t)$  is therefore always complex.
  • From the analytical signal  $x_+(t)$  the real bandpass signal can be easily determined by real part formation:
$$x(t) = {\rm Re}\left\{x_+(t)\right\} .$$

{{GraueBox|TEXT= $\text{Example 2:}$  The principle of the Hilbert transformation is illustrated again by the following diagram:

    • According to the left representation  $\rm (A)$  ,one gets an analytical signal  $x_+(t)$ from the physical signal  $x(t)$  by adding an imaginary part   ${\rm j} \cdot y(t)$ .
  • Here   $y(t) = {\rm H}\left\{x(t)\right\}$  is a real time function, which can be calculated easily in the spectral range by multiplying the spectrum  $X(f)$  with  $- {\rm j} \cdot \sign(f)$ .
On the Illustration of the Hilbert Transformed

The right representation  $\rm (B)$  is equivalent to  $\rm (A)$:

  • Now applies  $x_+(t) = x(t) + z(t)$  with the purely imaginary function  $z(t)$.
  • A comparison of the two images shows that actually  $z(t) = {\rm j} \cdot y(t)$  is valid.}


Vector Diagram Representation of The Harmonic Oscillation


The spectral function  $X(f)$  of a harmonic oscillation  $x(t) = A \cdot \text{cos}(2\pi f_{\rm T}t - \varphi)$  consists of two Dirac functions at the frequencies

  • $+f_{\rm T}$  with the complex weight   $A/2 \cdot \text{e}^{-\text{j}\hspace{0.05cm}\varphi}$,
  • $-f_{\rm T}$  with the complex weight   $A/2 \cdot \text{e}^{+\text{j}\hspace{0.05cm}\varphi}$.


Thus, the spectrum of the analytical signal is  $($without the Dirac function at the frequency  $f =-f_{\rm T})$:

$$X_+(f) = A \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\varphi}\cdot\delta (f - f_{\rm T}) .$$

The corresponding time function is obtained by applying the  Shifting Theorem:

$$x_+(t) = A \cdot {\rm e}^{\hspace{0.05cm} {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}( 2 \pi f_{\rm T} t \hspace{0.05cm}-\hspace{0.05cm} \varphi)}.$$

This equation describes a rotating pointer with constant angular velocity  $\omega_{\rm T} = 2\pi f_{\rm T}$ .

$\text{Example 3:}$  For illustrative reasons the coordinate system in the following figure is rotated to the left (real part up, imaginary part to the left), contrary to the usual representation by  $90^\circ$&nbsp.

Vector Diagram of a Harmonic Oscillation

Anhand dieser Grafik sind folgende Aussagen möglich: On the basis of this diagram the following statements are possible:

  • At the start time  $t = 0$  the pointer of length  $A$  (signal amplitude) lies with angle  $-\varphi$  in the complex plane. In the drawn example,  $\varphi = 45^\circ$.
  • For the times  $t > 0$  the pointer rotates with constant angular velocity (angular frequency)  $\omega_{\rm T}$  in mathematically positive direction, i.e. counterclockwise.
  • The top of the pointer thus always lies on a circle with radius  $A$  and requires exactly the time  $T_0$, i.e. the period of the harmonic oscillation  $x(t)$ for one rotation.
  • The projection of the analytical signal  $x_+(t)$  onto the real axis, marked by red dots, provides the instantaneous values of  $x(t)$.


Vector Diagram of a Sum of Harmonic Oscillations


For further description we assume the following spectrum for the analytical signal:

$$X_+(f) = \sum_{i=1}^{I}A_i \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} \varphi_i}\cdot\delta (f - f_{i}) .$$

The left image shows such a spectrum for the example  $I = 3$. If one chooses  $I$  relatively large and the distance between adjacent spectral lines correspondingly small, then (frequency–) continuous spectral functions  $X_+(f)$  can also be approximated with the above equation.

Vector Diagram of a Sum of 3 Oscillations

In the right picture the corresponding time function is indicated. This is in general:

$$x_+(t) = \sum_{i=1}^{I}A_i \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}(\omega_i \hspace{0.05cm}\cdot\hspace{0.05cm} t \hspace{0.05cm}-\hspace{0.05cm} \varphi_i)}.$$

To note about this graphic:

  • The sketch shows the initial position of the pointers at the start time  $t = 0$  corresponding to the amplitudes  $A_i$  and the phase positions  $\varphi_i$.
  • The tip of the resulting pointer compound is marked by the violet cross. One obtains by vectorial addition of the three individual pointers for the time  $t = 0$:
$$x_+(t= 0) = \big [1 \cdot \cos(60^\circ) - 1 \cdot {\rm j} \cdot \sin(60^\circ) \big ]+ 2 \cdot \cos(0^\circ)+1 \cdot \cos(180^\circ) = 1.500 - {\rm j} \cdot 0.866.$$
  • For times  $t > 0$  the three pointers rotate at different angular speeds  $\omega_i = 2\pi f_i$. The red hand rotates faster than the green hand, but slower than the blue hand.
  • Since all hands rotate counterclockwise, the resulting hand  $x_+(t)$  will also tend to move in this direction. At time  $t = 1\,µ\text {s}$  the peak of the resulting pointer for the given parameter values is
$$ \begin{align*}x_+(t = 1 {\rm \hspace{0.05cm}µ s}) & = 1 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}60^\circ}\cdot {\rm e}^{{\rm j}\hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.1cm}40 \hspace{0.05cm} \cdot \hspace{0.1cm} 0.001} + 2\cdot {\rm e}^{{\rm j}\hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.1cm}50 \hspace{0.05cm} \cdot \hspace{0.1cm} 0.001}- 1\cdot {\rm e}^{{\rm j}\hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.1cm}60 \hspace{0.05cm} \cdot \hspace{0.1cm} 0.001} = \\ & = 1 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}45.6^\circ} + 2\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}18^\circ}- 1\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}21.6^\circ} \approx 1.673- {\rm j} \cdot 0.464.\end{align*}$$
  • The resulting pointer tip does not lie on a circle like a single oscillation, but a complicated geometric figure is created.


The interactive applet  Physical Signal & Analytical Signal  illustrates  $x_+(t)$  for the sum of three harmonic oscillations.

Exercises for the Chapter


Exercise 4.3: Vector Diagram Representation

Exercise 4.3Z: Hilbert Transformator

Exercise 4.4: Vector Diagram for DSB-AM

Exercise 4.4Z: Vector Diagram for DSB-AM