Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Signal Representation/Analytical Signal and its Spectral Function"

From LNTwww
Line 43: Line 43:
  
  
==Allgemeingültige Berechnungsvorschrift im Zeitbereich==
+
==Calculation Procedure in The Time Domain==
 
<br>
 
<br>
 
[[File:Sig_T_4_2_S2a_Version2.png|right|frame|To Derive the Analytical Signal]]
 
[[File:Sig_T_4_2_S2a_Version2.png|right|frame|To Derive the Analytical Signal]]
Line 51: Line 51:
  
 
If one considers the nbsp; [[Signal_Representation/Fourier_Transform_Laws#Zuordnungssatz|Mapping Theorem]]&nbsp; of the Fourier transform, then the following statements are possible on the basis of the graphic:
 
If one considers the nbsp; [[Signal_Representation/Fourier_Transform_Laws#Zuordnungssatz|Mapping Theorem]]&nbsp; of the Fourier transform, then the following statements are possible on the basis of the graphic:
*Der gerade Anteil&nbsp; X+g(f)&nbsp; von&nbsp; X+(f)&nbsp; führt nach der Fouriertransformation zu einem reellen Zeitsignal, der ungerade Anteil&nbsp; X+u(f)&nbsp; zu einem imaginären.
+
*The even part&nbsp; X+g(f)&nbsp; of&nbsp; X+(f)&nbsp; leads after the Fourier transformation to a real time signal, the odd part&nbsp; X+u(f)&nbsp; to an imaginary one.
*Es ist offensichtlich, dass&nbsp; X+g(f)&nbsp; gleich dem tatsächlichen Fourierspektrum&nbsp; X(f)&nbsp; und damit der Realteil von&nbsp; x+g(t)&nbsp; gleich dem vorgegebenen Signal&nbsp; x(t)&nbsp; mit Bandpasseigenschaften ist.
+
*It is obvious that&nbsp; X+g(f)&nbsp; is equal to the actual Fourier spectrum&nbsp; X(f)&nbsp; and thus the real part of&nbsp; x+g(t)&nbsp; is equal to the given signal&nbsp; x(t)&nbsp; with bandpass properties.
*Bezeichnen wir den Imaginärteil mit&nbsp; y(t), so lautet das analytische Signal:
+
*If we denote the imaginary part with&nbsp; y(t), the analytical signal is:
 
:x+(t)=x(t)+jy(t).
 
:x+(t)=x(t)+jy(t).
*Nach den allgemein gültigen Gesetzen der Fouriertransformation entsprechend dem&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Zuordnungssatz|Zuordnungssatz]]&nbsp; gilt somit für die Spektralfunktion des Imaginärteils:
+
*According to the generally valid laws of Fourier transform corresponding to the&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Zuordnungssatz|Mapping Theorem]]&nbsp;, the following applies to the spectral function of the imaginary part:
 
:$${\rm j} \cdot Y(f) = X_{\rm +u}(f)= {\rm sign}(f) \cdot X(f)
 
:$${\rm j} \cdot Y(f) = X_{\rm +u}(f)= {\rm sign}(f) \cdot X(f)
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}Y(f) = \frac{{\rm
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}Y(f) = \frac{{\rm
 
sign}(f)}{ {\rm j}}\cdot X(f).$$
 
sign}(f)}{ {\rm j}}\cdot X(f).$$
*Transformiert man diese Gleichung in den Zeitbereich, so wird aus der Multiplikation die&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation|Faltungsoperation]], und man erhält:
+
*If one transforms this equation into the time domain, the multiplication becomes the&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation|convolution]], and one gets:
 
:$$y(t) = \frac{1}{ {\rm \pi} t} \hspace{0.05cm}\star
 
:$$y(t) = \frac{1}{ {\rm \pi} t} \hspace{0.05cm}\star
 
\hspace{0.05cm}x(t) = \frac{1}{ {\rm \pi}} \cdot
 
\hspace{0.05cm}x(t) = \frac{1}{ {\rm \pi}} \cdot
Line 65: Line 65:
 
\tau}}\hspace{0.15cm} {\rm d}\tau.$$
 
\tau}}\hspace{0.15cm} {\rm d}\tau.$$
  
==Darstellung mit der Hilberttransformation==
+
==Representation with Hilbert Transform==
 
<br>
 
<br>
An dieser Stelle ist es erforderlich, kurz auf eine weitere Spektraltransformation einzugehen, die im Buch&nbsp; [[Linear_and_Time_Invariant_Systems/Folgerungen_aus_dem_Zuordnungssatz#Hilbert.E2.80.93Transformation|Lineare zeitinvariante Systeme]]&nbsp; noch eingehend behandelt wird.
+
At this point it is necessary to briefly discuss a further spectral transformation, which is dealt thoroughly in the book [[Linear_and_Time_Invariant_Systems/Folgerungen_aus_dem_Zuordnungssatz#Hilbert.E2.80.93Transformation|Linear and Time Invariant Systems Systeme]]&nbsp;.
 
 
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
Definition:&nbsp; Für die&nbsp; '''Hilberttransformierte'''&nbsp; H{x(t)}&nbsp; einer Zeitfunktion&nbsp; x(t)&nbsp; gilt:
+
Definition:&nbsp; FFor the&nbsp; '''Hilbert transformed''' &nbsp; H{x(t)}&nbsp; a time function&nbsp; x(t)&nbsp; applies:
 
   
 
   
 
:$$y(t) = {\rm H}\left\{x(t)\right\} = \frac{1}{ {\rm \pi} } \cdot
 
:$$y(t) = {\rm H}\left\{x(t)\right\} = \frac{1}{ {\rm \pi} } \cdot
Line 76: Line 75:
 
\tau} }\hspace{0.15cm} {\rm d}\tau.$$
 
\tau} }\hspace{0.15cm} {\rm d}\tau.$$
  
*Dieses bestimmte Integral ist nicht auf einfache, herkömmliche Art lösbar, sondern muss mit Hilfe des&nbsp; [https://de.wikipedia.org/wiki/Cauchyscher_Hauptwert Cauchy–Hauptwertsatzes]&nbsp; ausgewertet werden.  
+
*This particular integral cannot be solved in a simple, conventional way, but must be evaluated using the&nbsp; [https://en.wikipedia.org/wiki/Cauchy_principal_value principal value of Cauchy]&nbsp;.
  
*Entsprechend gilt im Frequenzbereich:
+
*Correspondingly valid in the frequency domain:
 
   
 
   
 
:Y(f)=jsign(f)X(f).}}
 
:Y(f)=jsign(f)X(f).}}
  
  
Das Ergebnis der letzten Seite lässt sich mit dieser Definition wie folgt zusammenfassen:
+
The result of the last page can be summarized with this definition as follows:
*Man erhält aus dem realen, physikalischen Bandpass–Signal&nbsp; x(t)&nbsp; das analytische Signal&nbsp; x+(t), indem man zu&nbsp; x(t)&nbsp; einen Imaginärteil entsprechend der Hilberttransformierten hinzufügt:
+
*You get from the real, physical bandpass signal&nbsp; x(t)&nbsp; the analytic signal&nbsp; x+(t) by adding to&nbsp; x(t)&nbsp; an imaginary part according to the Hilbert transform:
 
   
 
   
 
:x+(t)=x(t)+jH{x(t)}.
 
:x+(t)=x(t)+jH{x(t)}.
  
*Die Hilberttransformierte&nbsp; H{x(t)}&nbsp; verschwindet nur für den Fall&nbsp; x(t)=const. &nbsp; &rArr; &nbsp; Gleichsignal  Bei allen anderen Signalformen ist das analytische Signal&nbsp; x+(t)&nbsp; somit stets komplex.
+
*The Hilbert transformed&nbsp; H{x(t)}&nbsp; disappears only in the case of&nbsp; x(t)=const. &nbsp; &rArr; &nbsp; DC signal With all other signal forms the analytic signal&nbsp; x+(t)&nbsp; is therefore always complex.
*Aus dem analytischen Signal&nbsp; x+(t)&nbsp; kann das reale Bandpass–Signal in einfacher Weise durch Realteilbildung ermittelt werden:
+
*From the analytical signal&nbsp; x+(t)&nbsp; the real bandpass signal can be easily determined by real part formation:
 
:x(t)=Re{x+(t)}.
 
:x(t)=Re{x+(t)}.
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp; Das Prinzip der Hilbert–Transformation wird durch die folgende Grafik nochmals verdeutlicht:  
+
$\text{Example 2:}$&nbsp; The principle of the Hilbert transformation is illustrated again by the following diagram:  
*Nach der linken Darstellung&nbsp; (A)&nbsp; kommt man vom physikalischen Signal&nbsp; $x(t)$&nbsp; zum analytischen Signal&nbsp; $x_+(t)$, indem man einen Imaginärteil&nbsp; jy(t)&nbsp; hinzufügt.  
+
**According to the left representation&nbsp; (A)&nbsp; ,one gets an analytical signal&nbsp; $x_+(t)$ from the physical signal&nbsp; $x(t)$&nbsp;  by adding an imaginary part &nbsp; jy(t)&nbsp;.  
*Hierbei ist&nbsp; y(t)=H{x(t)}&nbsp; eine reelle Zeitfunktion, die sich am einfachsten im Spektralbereich durch die Multiplikation des Spektrums&nbsp; X(f)&nbsp; mit&nbsp; jsign(f)&nbsp; angeben lässt.
+
*Here &nbsp; y(t)=H{x(t)}&nbsp; is a real time function, which can be calculated easily in the spectral range by multiplying the spectrum&nbsp; X(f)&nbsp; with&nbsp; jsign(f)&nbsp;.
  
[[File:P_ID2729__Sig_T_4_2_S2b_neu.png|center|frame|Zur Verdeutlichung der Hilbert–Transformierten]]
+
[[File:P_ID2729__Sig_T_4_2_S2b_neu.png|center|frame|On the Illustration of the Hilbert Transformed]]
  
Die rechte Darstellung&nbsp; (B)&nbsp; ist äquivalent zu&nbsp; (A):  
+
The right representation&nbsp; (B)&nbsp; is equivalent to&nbsp; (A):  
*Nun gilt&nbsp; x+(t)=x(t)+z(t)&nbsp; mit der rein imaginären Funktion&nbsp; z(t).  
+
*Now applies&nbsp; x+(t)=x(t)+z(t)&nbsp; with the purely imaginary function&nbsp; z(t).  
*Ein Vergleich der beiden Bilder zeigt, dass tatsächlich&nbsp; z(t)=jy(t)&nbsp; ist.}}
+
*A comparison of the two images shows that actually&nbsp; z(t)=jy(t)&nbsp; is valid.}
  
  
==Zeigerdiagrammdarstellung der harmonischen Schwingung==
+
==Vector Diagram Representation of The Harmonic Oscillation==
 
<br>
 
<br>
Die Spektralfunktion&nbsp; X(f)&nbsp; einer harmonischen Schwingung&nbsp; x(t)=Acos(2πfTtφ)&nbsp; besteht bekanntlich aus zwei Diracfunktionen bei den Frequenzen
+
The spectral function&nbsp; X(f)&nbsp; of a harmonic oscillation&nbsp; x(t)=Acos(2πfTtφ)&nbsp; consists of two Dirac functions at the frequencies
* +fT&nbsp; mit dem komplexen Gewicht&nbsp; A/2ejφ,
+
* +fT&nbsp; with the complex weight &nbsp; A/2ejφ,
* fT&nbsp; mit dem komplexen Gewicht&nbsp; A/2e+jφ.
+
* fT&nbsp; with the complex weight &nbsp; A/2e+jφ.
  
  
Somit lautet das Spektrum des analytischen Signals&nbsp; (also ohne die Diracfunktion bei der Frequenz&nbsp; f=fT):
+
Thus, the spectrum of the analytical signal is&nbsp; (without the Dirac function at the frequency&nbsp; f=fT):
  
 
:$$X_+(f) = A \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\varphi}\cdot\delta (f - f_{\rm
 
:$$X_+(f) = A \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\varphi}\cdot\delta (f - f_{\rm
 
T}) .$$
 
T}) .$$
 
   
 
   
Die dazugehörige Zeitfunktion erhält man durch Anwendung des&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|Verschiebungssatzes]]:
+
The corresponding time function is obtained by applying the&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|Shifting Theorem]]:
 
   
 
   
 
:$$x_+(t) = A \cdot {\rm e}^{\hspace{0.05cm} {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}( 2 \pi f_{\rm T} t
 
:$$x_+(t) = A \cdot {\rm e}^{\hspace{0.05cm} {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}( 2 \pi f_{\rm T} t
 
\hspace{0.05cm}-\hspace{0.05cm} \varphi)}.$$
 
\hspace{0.05cm}-\hspace{0.05cm} \varphi)}.$$
  
Diese Gleichung beschreibt einen mit konstanter Winkelgeschwindigkeit&nbsp; ωT=2πfT&nbsp; drehenden Zeiger.  
+
This equation describes a rotating pointer with constant angular velocity&nbsp; ωT=2πfT&nbsp;.
 
 
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 3:}$&nbsp; Aus Darstellungsgründen ist in der folgenden Grafik das Koordinatensystem entgegen der üblichen Darstellung um&nbsp; 90&nbsp; nach links gedreht (Realteil nach oben, Imaginärteil nach links).
+
$\text{Example 3:}$&nbsp; For illustrative reasons the coordinate system in the following figure is rotated to the left (real part up, imaginary part to the left), contrary to the usual representation by&nbsp; 90&nbsp.
  
[[File:P_ID712__Sig_T_4_2_S3.png|center|frame|Zeigerdiagramm einer harmonischen Schwingung]]
+
[[File:P_ID712__Sig_T_4_2_S3.png|center|frame|Vector Diagram of a Harmonic Oscillation]]
  
 
Anhand dieser Grafik sind folgende Aussagen möglich:
 
Anhand dieser Grafik sind folgende Aussagen möglich:
*Zum Startzeitpunkt&nbsp; t=0&nbsp; liegt der Zeiger der Länge&nbsp; A&nbsp; (Signalamplitude) mit dem Winkel&nbsp; φ&nbsp; in der komplexen Ebene. Im gezeichneten Beispiel gilt&nbsp; φ=45.
+
On the basis of this diagram the following statements are possible:
*Für Zeiten&nbsp; t>0&nbsp; dreht der Zeiger mit konstanter Winkelgeschwindigkeit (Kreisfrequenz)&nbsp; ωT&nbsp; in mathematisch positiver Richtung, das heißt entgegen dem Uhrzeigersinn.
+
*At the start time&nbsp; t=0&nbsp; the pointer of length&nbsp; A&nbsp; (signal amplitude) lies with angle&nbsp; φ&nbsp; in the complex plane. In the drawn example,&nbsp; φ=45.
*Die Spitze des Zeigers liegt somit stets auf einem Kreis mit Radius&nbsp; A&nbsp; und benötigt für eine Umdrehung genau die Zeit&nbsp; T0, also die Periodendauer der harmonischen Schwingung&nbsp; x(t).
+
*For the times&nbsp; t>0&nbsp; the pointer rotates with constant angular velocity (angular frequency)&nbsp; ωT&nbsp; in mathematically positive direction, i.e. counterclockwise.
*Die Projektion des analytischen Signals&nbsp; x+(t)&nbsp; auf die reelle Achse, durch rote Punkte markiert, liefert die Augenblickswerte von&nbsp; x(t).}}
+
*The top of the pointer thus always lies on a circle with radius&nbsp; A&nbsp; and requires exactly the time&nbsp; T0, i.e. the period of the harmonic oscillation&nbsp; x(t) for one rotation.
 +
*The projection of the analytical signal&nbsp; x+(t)&nbsp; onto the real axis, marked by red dots, provides the instantaneous values of&nbsp; x(t).}}
  
  
  
==Zeigerdiagramm einer Summe harmonischer Schwingungen==
+
==Vector Diagram  of a Sum of Harmonic Oscillations==
 
<br>
 
<br>
Für die weitere Beschreibung gehen wir  für das analytische Signal von folgendem Spektrum aus:
+
For further description we assume the following spectrum for the analytical signal:
 
   
 
   
 
:$$X_+(f) = \sum_{i=1}^{I}A_i \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}
 
:$$X_+(f) = \sum_{i=1}^{I}A_i \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}
 
\varphi_i}\cdot\delta (f - f_{i}) .$$
 
\varphi_i}\cdot\delta (f - f_{i}) .$$
  
Das linke Bild zeigt ein solches Spektrum für das Beispiel&nbsp; I=3. Wählt man&nbsp; I&nbsp; relativ groß und den Abstand zwischen benachbarten Spektrallinien entsprechend klein, so können mit obiger Gleichung auch (frequenz&ndash;) kontinuierliche Spektralfunktionen&nbsp; X+(f)&nbsp; angenähert werden.
+
The left image shows such a spectrum for the example&nbsp; I=3. If one chooses&nbsp; I&nbsp; relatively large and the distance between adjacent spectral lines correspondingly small, then (frequency&ndash;) continuous spectral functions&nbsp; X+(f)&nbsp; can also be approximated with the above equation.
  
[[File:P_ID715__Sig_T_4_2_S4.png|center|frame|Zeigerdiagramm eines Verbundes aus drei Schwingungen]]
+
[[File:P_ID715__Sig_T_4_2_S4.png|center|frame|Vector Diagram  of a Sum of 3 Oscillations]]
  
Im rechten Bild ist die dazugehörige Zeitfunktion angedeutet. Diese lautet allgemein:
+
In the right picture the corresponding time function is indicated. This is in general:
 
   
 
   
 
:$$x_+(t) = \sum_{i=1}^{I}A_i \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}(\omega_i
 
:$$x_+(t) = \sum_{i=1}^{I}A_i \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}(\omega_i
 
\hspace{0.05cm}\cdot\hspace{0.05cm} t \hspace{0.05cm}-\hspace{0.05cm} \varphi_i)}.$$
 
\hspace{0.05cm}\cdot\hspace{0.05cm} t \hspace{0.05cm}-\hspace{0.05cm} \varphi_i)}.$$
  
Zu dieser Grafik anzumerken:
+
To note about this graphic:
*Die Skizze zeigt die Ausgangslage der Zeiger zum Startzeitpunkt&nbsp; t=0&nbsp; entsprechend den Amplituden&nbsp; Ai&nbsp; und den Phasenlagen&nbsp; φi.
+
*The sketch shows the initial position of the pointers at the start time&nbsp; t=0&nbsp; corresponding to the amplitudes&nbsp; Ai&nbsp; and the phase positions&nbsp; φi.
*Die Spitze des resultierenden Zeigerverbundes ist durch das violette Kreuz markiert. Man erhält durch vektorielle Addition der drei Einzelzeiger für den Zeitpunkt&nbsp; t=0:
+
*The tip of the resulting pointer compound is marked by the violet cross. One obtains by vectorial addition of the three individual pointers for the time&nbsp; t=0:
 
:x+(t=0)=[1cos(60)1jsin(60)]+2cos(0)+1cos(180)=1.500j0.866.
 
:x+(t=0)=[1cos(60)1jsin(60)]+2cos(0)+1cos(180)=1.500j0.866.
*Für Zeiten&nbsp; t>0&nbsp; drehen die drei Zeiger mit unterschiedlichen Winkelgeschwindigkeiten&nbsp; ωi=2πfi. Der rote Zeiger dreht schneller als der grüne, aber langsamer als der blaue Zeiger.
+
*For times&nbsp; t>0&nbsp; the three pointers rotate at different angular speeds&nbsp; ωi=2πfi. The red hand rotates faster than the green hand, but slower than the blue hand.
*Da alle Zeiger entgegen dem Uhrzeigersinn drehen, wird sich auch der resultierende Zeiger&nbsp; x+(t)&nbsp; tendenziell in diese Richtung bewegen. Zum Zeitpunkt&nbsp; t = 1\,&micro;\text {s}&nbsp; liegt die Spitze des resultierenen Zeigers für die gegebenen Parameterwerte bei
+
*Since all hands rotate counterclockwise, the resulting hand&nbsp; x+(t)&nbsp; will also tend to move in this direction. At time&nbsp; t = 1\,&micro;\text {s}&nbsp; the peak of the resulting pointer for the given parameter values is
 +
 
 
:$$ \begin{align*}x_+(t = 1 {\rm \hspace{0.05cm}&micro; s}) & =  1 \cdot {\rm e}^{-{\rm
 
:$$ \begin{align*}x_+(t = 1 {\rm \hspace{0.05cm}&micro; s}) & =  1 \cdot {\rm e}^{-{\rm
 
j}\hspace{0.05cm}\cdot \hspace{0.05cm}60^\circ}\cdot {\rm e}^{{\rm
 
j}\hspace{0.05cm}\cdot \hspace{0.05cm}60^\circ}\cdot {\rm e}^{{\rm
Line 171: Line 171:
 
e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}21.6^\circ} \approx
 
e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}21.6^\circ} \approx
 
1.673- {\rm j} \cdot 0.464.\end{align*}$$
 
1.673- {\rm j} \cdot 0.464.\end{align*}$$
*Die resultierende Zeigerspitze liegt nun aber nicht wie bei einer einzigen Schwingung auf einem Kreis, sondern es entsteht eine komplizierte geometrische Figur.
+
*The resulting pointer tip does not lie on a circle like a single oscillation, but a complicated geometric figure is created.
 
 
  
Das interaktive Applet&nbsp; [[Applets:Physikalisches_Signal_%26_Analytisches_Signal|Physikalisches Signal & Analytisches Signal]]&nbsp; verdeutlicht&nbsp; x+(t)&nbsp; für die Summe dreier harmonischer Schwingungen.
 
  
 +
The  interactive applet&nbsp; [[Applets:Physikalisches_Signal_%26_Analytisches_Signal|Physical Signal & Analytical Signal]]&nbsp; illustrates&nbsp; x+(t)&nbsp; for the sum of three harmonic oscillations.
  
==Aufgaben zum Kapitel==
+
==Exercises for the Chapter==
 
<br>
 
<br>
 
[[Aufgaben:Exercise 4.3: Vector Diagram Representation|Exercise 4.3: Vector Diagram Representation]]
 
[[Aufgaben:Exercise 4.3: Vector Diagram Representation|Exercise 4.3: Vector Diagram Representation]]

Revision as of 17:11, 26 November 2020

Definition in the Frequency Domain


We consider a real bandpass-like signal  x(t)  with the corresponding bandpass spectrum  X(f), which has an even real and an odd imaginary part with respect to the frequency zero point. It is assumed that the carrier frequency  fT  is much larger than the bandwidth of the bandpass signal  x(t) .

Definition:  The time function belonging to the physical signal  x(t)  analytical signal  x+(t)  is that time function, whose spectrum fulfills the following property

Analytical Signal in the Frequency Domain
X+(f)=[1+sign(f)]X(f)={2X(f)forf>0,0forf<0.

The so called „signum function” is for positive values of  f  equal to  +1  and for negative  f-values equal to  1.

  • The (double sided) limit value returns  sign(0)=0.
  • The index "+" should make clear that  X+(f)  has only parts at positive frequencies.


From the graphic you can see the calculation rule for  X+(f):

The actual bandpass spectrum  X(f)  will

  • doubled at the positive frequencies, and
  • set to zero at the negative frequencies.


Example of a Spectrum of an Analytical Signal

Example 1: 

The graphic

  • at left shows the (complex) spectrum  X(f)  of the bandpass signal
x(t)=4Vcos(2πfut)+6Vsin(2πfot).
  • and on the right the (complex) spectrum of the analytical signal  x+(t).


Calculation Procedure in The Time Domain


To Derive the Analytical Signal

Now we will take a closer look at the spectrum  X+(f)  of the analytical signal and divide it into a with respect to  f=0  even part  X+g(f)  and an odd part  X+u(f) :

X+(f)=X+g(f)+X+u(f).

All these spectra are generally complex.

If one considers the nbsp; Mapping Theorem  of the Fourier transform, then the following statements are possible on the basis of the graphic:

  • The even part  X+g(f)  of  X+(f)  leads after the Fourier transformation to a real time signal, the odd part  X+u(f)  to an imaginary one.
  • It is obvious that  X+g(f)  is equal to the actual Fourier spectrum  X(f)  and thus the real part of  x+g(t)  is equal to the given signal  x(t)  with bandpass properties.
  • If we denote the imaginary part with  y(t), the analytical signal is:
x+(t)=x(t)+jy(t).
  • According to the generally valid laws of Fourier transform corresponding to the  Mapping Theorem , the following applies to the spectral function of the imaginary part:
jY(f)=X+u(f)=sign(f)X(f)Y(f)=sign(f)jX(f).
  • If one transforms this equation into the time domain, the multiplication becomes the  convolution, and one gets:
y(t)=1πtx(t)=1π+x(τ)tτdτ.

Representation with Hilbert Transform


At this point it is necessary to briefly discuss a further spectral transformation, which is dealt thoroughly in the book Linear and Time Invariant Systems Systeme .

Definition:  FFor the  Hilbert transformed   H{x(t)}  a time function  x(t)  applies:

y(t)=H{x(t)}=1π+x(τ)tτdτ.
  • This particular integral cannot be solved in a simple, conventional way, but must be evaluated using the  principal value of Cauchy .
  • Correspondingly valid in the frequency domain:
Y(f)=jsign(f)X(f).


The result of the last page can be summarized with this definition as follows:

  • You get from the real, physical bandpass signal  x(t)  the analytic signal  x+(t) by adding to  x(t)  an imaginary part according to the Hilbert transform:
x+(t)=x(t)+jH{x(t)}.
  • The Hilbert transformed  H{x(t)}  disappears only in the case of  x(t)=const.   ⇒   DC signal With all other signal forms the analytic signal  x+(t)  is therefore always complex.
  • From the analytical signal  x+(t)  the real bandpass signal can be easily determined by real part formation:
x(t)=Re{x+(t)}.

{{GraueBox|TEXT= Example 2:  The principle of the Hilbert transformation is illustrated again by the following diagram:

    • According to the left representation  (A)  ,one gets an analytical signal  x+(t) from the physical signal  x(t)  by adding an imaginary part   jy(t) .
  • Here   y(t)=H{x(t)}  is a real time function, which can be calculated easily in the spectral range by multiplying the spectrum  X(f)  with  jsign(f) .
On the Illustration of the Hilbert Transformed

The right representation  (B)  is equivalent to  (A):

  • Now applies  x+(t)=x(t)+z(t)  with the purely imaginary function  z(t).
  • A comparison of the two images shows that actually  z(t)=jy(t)  is valid.}


Vector Diagram Representation of The Harmonic Oscillation


The spectral function  X(f)  of a harmonic oscillation  x(t)=Acos(2πfTtφ)  consists of two Dirac functions at the frequencies

  • +fT  with the complex weight   A/2ejφ,
  • fT  with the complex weight   A/2e+jφ.


Thus, the spectrum of the analytical signal is  (without the Dirac function at the frequency  f=fT):

X+(f)=Aejφδ(ffT).

The corresponding time function is obtained by applying the  Shifting Theorem:

x+(t)=Aej(2πfTtφ).

This equation describes a rotating pointer with constant angular velocity  ωT=2πfT .

Example 3:  For illustrative reasons the coordinate system in the following figure is rotated to the left (real part up, imaginary part to the left), contrary to the usual representation by  90&nbsp.

Vector Diagram of a Harmonic Oscillation

Anhand dieser Grafik sind folgende Aussagen möglich: On the basis of this diagram the following statements are possible:

  • At the start time  t=0  the pointer of length  A  (signal amplitude) lies with angle  φ  in the complex plane. In the drawn example,  φ=45.
  • For the times  t>0  the pointer rotates with constant angular velocity (angular frequency)  ωT  in mathematically positive direction, i.e. counterclockwise.
  • The top of the pointer thus always lies on a circle with radius  A  and requires exactly the time  T0, i.e. the period of the harmonic oscillation  x(t) for one rotation.
  • The projection of the analytical signal  x+(t)  onto the real axis, marked by red dots, provides the instantaneous values of  x(t).


Vector Diagram of a Sum of Harmonic Oscillations


For further description we assume the following spectrum for the analytical signal:

X+(f)=Ii=1Aiejφiδ(ffi).

The left image shows such a spectrum for the example  I=3. If one chooses  I  relatively large and the distance between adjacent spectral lines correspondingly small, then (frequency–) continuous spectral functions  X+(f)  can also be approximated with the above equation.

Vector Diagram of a Sum of 3 Oscillations

In the right picture the corresponding time function is indicated. This is in general:

x+(t)=Ii=1Aiej(ωitφi).

To note about this graphic:

  • The sketch shows the initial position of the pointers at the start time  t=0  corresponding to the amplitudes  Ai  and the phase positions  φi.
  • The tip of the resulting pointer compound is marked by the violet cross. One obtains by vectorial addition of the three individual pointers for the time  t=0:
x+(t=0)=[1cos(60)1jsin(60)]+2cos(0)+1cos(180)=1.500j0.866.
  • For times  t>0  the three pointers rotate at different angular speeds  ωi=2πfi. The red hand rotates faster than the green hand, but slower than the blue hand.
  • Since all hands rotate counterclockwise, the resulting hand  x+(t)  will also tend to move in this direction. At time  t = 1\,µ\text {s}  the peak of the resulting pointer for the given parameter values is
\begin{align*}x_+(t = 1 {\rm \hspace{0.05cm}µ s}) & = 1 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}60^\circ}\cdot {\rm e}^{{\rm j}\hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.1cm}40 \hspace{0.05cm} \cdot \hspace{0.1cm} 0.001} + 2\cdot {\rm e}^{{\rm j}\hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.1cm}50 \hspace{0.05cm} \cdot \hspace{0.1cm} 0.001}- 1\cdot {\rm e}^{{\rm j}\hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.1cm}60 \hspace{0.05cm} \cdot \hspace{0.1cm} 0.001} = \\ & = 1 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}45.6^\circ} + 2\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}18^\circ}- 1\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}21.6^\circ} \approx 1.673- {\rm j} \cdot 0.464.\end{align*}
  • The resulting pointer tip does not lie on a circle like a single oscillation, but a complicated geometric figure is created.


The interactive applet  Physical Signal & Analytical Signal  illustrates  x_+(t)  for the sum of three harmonic oscillations.

Exercises for the Chapter


Exercise 4.3: Vector Diagram Representation

Exercise 4.3Z: Hilbert Transformator

Exercise 4.4: Vector Diagram for DSB-AM

Exercise 4.4Z: Vector Diagram for DSB-AM