Difference between revisions of "Aufgaben:Exercise 4.5Z: Simple Phase Modulator"
m (Oezdemir moved page Aufgabe 4.5Z: Einfacher Phasenmodulator to Exercise 4.5Z: Simple Phase Modulator) |
|||
Line 4: | Line 4: | ||
[[File:P_ID757__Sig_Z_4_5.png|right|frame|Modell des betrachteten Phasenmodulators]] | [[File:P_ID757__Sig_Z_4_5.png|right|frame|Modell des betrachteten Phasenmodulators]] | ||
− | + | The diagram shows a quite simple arrangement for approximating a phase modulator. All signals are dimensionless quantities. | |
− | + | The sinusoidal message signal q(t) of frequency fN=10 kHz is multiplied by the signal m(t) , which results from the cosinusoidal carrier signal z(t) by phase shifting by ϕ=90∘ : | |
:m(t)=cos(ωT⋅t+90∘). | :m(t)=cos(ωT⋅t+90∘). | ||
− | + | Then the signal z(t) with the frequency fT=1 MHz is still added directly. | |
− | + | For abbreviation purposes, this task also uses: | |
− | * | + | *the difference frequency fΔ=fT−fN=0.99 MHz, |
− | * | + | *the sum frequency fΣ=fT+fN=1.01 MHz, |
− | * | + | *the two angular frequencies ωΔ=2π⋅fΔ and ωΣ=2π⋅fΣ. |
Line 22: | Line 22: | ||
− | '' | + | ''Hints:'' |
− | * | + | *This exercise belongs to the chapter [[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function|Equivalent Low Pass Signal and Its Spectral Function]]. |
− | * | + | *Consider the trigonomic transformations |
:sin(α)⋅cos(β)=1/2⋅sin(α−β)+1/2⋅sin(α+β), | :sin(α)⋅cos(β)=1/2⋅sin(α−β)+1/2⋅sin(α+β), | ||
:sin(α)⋅sin(β)=1/2⋅cos(α−β)−1/2⋅cos(α+β). | :sin(α)⋅sin(β)=1/2⋅cos(α−β)−1/2⋅cos(α+β). | ||
Line 31: | Line 31: | ||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Which of the following equations correctly describe s(t) ? |
|type="[]"} | |type="[]"} | ||
+ s(t)=cos(ωT⋅t)−q(t)⋅sin(ωT⋅t). | + s(t)=cos(ωT⋅t)−q(t)⋅sin(ωT⋅t). | ||
Line 42: | Line 42: | ||
− | { | + | {Calculate the equivalent low pass signal sTP(t). What are the inphase and quadrature components at time t=0? |
|type="{}"} | |type="{}"} | ||
sI(t=0) = { 1 3% } | sI(t=0) = { 1 3% } | ||
Line 48: | Line 48: | ||
− | { | + | {Which of the following statements are true for the locus curve sTP(t) zu? |
|type="[]"} | |type="[]"} | ||
− | - | + | - The locus curve is a circular arc. |
− | - | + | - The locus curve is a horizontal straight line. |
− | + | + | + The locus curve is a vertical straight line. |
− | { | + | {Calculate the magnitude a(t), in particular its maximum and minimum values. |
+ | |||
|type="{}"} | |type="{}"} | ||
amax = { 1.414 3% } | amax = { 1.414 3% } | ||
Line 61: | Line 62: | ||
− | { | + | {What is the phase function ϕ(t). What is its maximum value? |
− | + | ||
− | ϕmax = { 45 3% } $\text{ | + | ϕmax = { 45 3% } $\text{deg}$ |
Line 69: | Line 70: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' <u>The first and last suggestions</u> are correct: |
− | * | + | *Due to the phase shift by ϕ=90∘ the cosine function becomes the minus-sine function. |
− | * | + | *With q(t)=sin(ωNt) holds: |
:$${s(t)} = \cos({ \omega_{\rm T}\hspace{0.05cm} t }) - \sin({ | :$${s(t)} = \cos({ \omega_{\rm T}\hspace{0.05cm} t }) - \sin({ | ||
\omega_{\rm T}\hspace{0.05cm} t }) \cdot \sin({ \omega_{\rm | \omega_{\rm T}\hspace{0.05cm} t }) \cdot \sin({ \omega_{\rm | ||
Line 82: | Line 83: | ||
− | '''(2)''' | + | '''(2)''' The spectrum of the analytical signal is: |
:$$S_{\rm +}(f) = \delta (f - f_{\rm T}) - 0.5 \cdot \delta (f - | :$$S_{\rm +}(f) = \delta (f - f_{\rm T}) - 0.5 \cdot \delta (f - | ||
f_{\rm \Delta})+ 0.5 \cdot \delta (f - f_{\rm \Sigma}) .$$ | f_{\rm \Delta})+ 0.5 \cdot \delta (f - f_{\rm \Sigma}) .$$ | ||
− | * | + | *By shitfing fT one arrives at the spectrum of the equivalent low pass signal: |
:$$S_{\rm TP}(f) = \delta (f ) - 0.5 \cdot \delta (f + f_{\rm N})+ | :$$S_{\rm TP}(f) = \delta (f ) - 0.5 \cdot \delta (f + f_{\rm N})+ | ||
0.5 \cdot \delta (f - f_{\rm N}) .$$ | 0.5 \cdot \delta (f - f_{\rm N}) .$$ | ||
− | * | + | *This leads to the time function |
:$$s_{\rm TP}(t) = {\rm 1 } - 0.5 \cdot {\rm e}^{{-\rm | :$$s_{\rm TP}(t) = {\rm 1 } - 0.5 \cdot {\rm e}^{{-\rm | ||
j}\hspace{0.05cm} \omega_{\rm N} \hspace{0.05cm} t }+ 0.5 \cdot | j}\hspace{0.05cm} \omega_{\rm N} \hspace{0.05cm} t }+ 0.5 \cdot | ||
{\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm N} \hspace{0.05cm} t } | {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm N} \hspace{0.05cm} t } | ||
= 1 + {\rm j} \cdot \sin(\omega_{\rm N} \hspace{0.05cm} t ).$$ | = 1 + {\rm j} \cdot \sin(\omega_{\rm N} \hspace{0.05cm} t ).$$ | ||
− | * | + | *At time t=0 ist sTP(t)=1, is real. Thus: |
:* sI(t=0)=Re[sTP(t=0)]=1_, | :* sI(t=0)=Re[sTP(t=0)]=1_, | ||
Line 101: | Line 102: | ||
− | [[File:P_ID762__Sig_Z_4_5_a.png|right|frame| | + | [[File:P_ID762__Sig_Z_4_5_a.png|right|frame|Locus curve of a simple phase modulator]] |
− | '''(3)''' | + | '''(3)''' The locus curve is a vertical straight line ⇒ <u>Proposition 3</u> with the following values: |
:$$s_{\rm TP}(t = 0) = s_{\rm TP}(t = {\rm 50 \hspace{0.05cm} µ s}) | :$$s_{\rm TP}(t = 0) = s_{\rm TP}(t = {\rm 50 \hspace{0.05cm} µ s}) | ||
= \text{ ...} = 1,$$ | = \text{ ...} = 1,$$ | ||
Line 111: | Line 112: | ||
− | '''(4)''' | + | '''(4)''' The magnitude (the pointer length) varies between amax=√2≈1.414_ and amin=1_. It holds: |
:a(t)=√1+sin2(ωNt). | :a(t)=√1+sin2(ωNt). | ||
− | + | With ideal phase modulation, on the other hand, the envelope a(t) would have to be constant. | |
− | '''(5)''' | + | '''(5)''' The real part is always 1, the imaginary part equal to sin(ωN⋅t). From this follows the phase function: |
:$$\phi(t)= {\rm arctan} \hspace{0.1cm}{\left(\sin(\omega_{\rm N} | :$$\phi(t)= {\rm arctan} \hspace{0.1cm}{\left(\sin(\omega_{\rm N} | ||
\hspace{0.05cm} t )\right)}.$$ | \hspace{0.05cm} t )\right)}.$$ | ||
− | * | + | *The maximum value of the sine function is 1. From this follows: |
:ϕmax=arctan(1)=π/4_⇒45∘_. | :ϕmax=arctan(1)=π/4_⇒45∘_. | ||
{{ML-Fuß}} | {{ML-Fuß}} |
Revision as of 16:59, 10 February 2021
The diagram shows a quite simple arrangement for approximating a phase modulator. All signals are dimensionless quantities.
The sinusoidal message signal q(t) of frequency fN=10 kHz is multiplied by the signal m(t) , which results from the cosinusoidal carrier signal z(t) by phase shifting by ϕ=90∘ :
- m(t)=cos(ωT⋅t+90∘).
Then the signal z(t) with the frequency fT=1 MHz is still added directly.
For abbreviation purposes, this task also uses:
- the difference frequency fΔ=fT−fN=0.99 MHz,
- the sum frequency fΣ=fT+fN=1.01 MHz,
- the two angular frequencies ωΔ=2π⋅fΔ and ωΣ=2π⋅fΣ.
Hints:
- This exercise belongs to the chapter Equivalent Low Pass Signal and Its Spectral Function.
- Consider the trigonomic transformations
- sin(α)⋅cos(β)=1/2⋅sin(α−β)+1/2⋅sin(α+β),
- sin(α)⋅sin(β)=1/2⋅cos(α−β)−1/2⋅cos(α+β).
Questions
Solution
- Due to the phase shift by ϕ=90∘ the cosine function becomes the minus-sine function.
- With q(t)=sin(ωNt) holds:
- s(t)=cos(ωTt)−sin(ωTt)⋅sin(ωNt)=cos(ωTt)−0.5⋅cos((ωT−ωN)t)+0.5⋅cos((ωT+ωN)t).
(2) The spectrum of the analytical signal is:
- S+(f)=δ(f−fT)−0.5⋅δ(f−fΔ)+0.5⋅δ(f−fΣ).
- By shitfing fT one arrives at the spectrum of the equivalent low pass signal:
- STP(f)=δ(f)−0.5⋅δ(f+fN)+0.5⋅δ(f−fN).
- This leads to the time function
- sTP(t)=1−0.5⋅e−jωNt+0.5⋅ejωNt=1+j⋅sin(ωNt).
- At time t=0 ist sTP(t)=1, is real. Thus:
- sI(t=0)=Re[sTP(t=0)]=1_,
- sQ(t=0)=Ime[sTP(t=0)]=0_.
(3) The locus curve is a vertical straight line ⇒ Proposition 3 with the following values:
- s_{\rm TP}(t = 0) = s_{\rm TP}(t = {\rm 50 \hspace{0.05cm} µ s}) = \text{ ...} = 1,
- s_{\rm TP}(t = {\rm 25 \hspace{0.05cm} µ s}) = s_{\rm TP}(t = {\rm 125 \hspace{0.05cm} \mu s}) = \text{ ...} = 1 + {\rm j},
- s_{\rm TP}(t = {\rm 75 \hspace{0.05cm} µ s}) = s_{\rm TP}(t = {\rm 175 \hspace{0.05cm} \mu s}) = \text{ ...} = 1 - {\rm j}.
(4) The magnitude (the pointer length) varies between a_{\rm max} = \sqrt{2}\; \underline{\approx 1.414} and a_{\rm min} \;\underline{= 1}. It holds:
- a(t) = \sqrt{1 + \sin^2(\omega_{\rm N} \hspace{0.05cm} t )}.
With ideal phase modulation, on the other hand, the envelope a(t) would have to be constant.
(5) The real part is always 1, the imaginary part equal to \sin(\omega_{\rm N} \cdot t) . From this follows the phase function:
- \phi(t)= {\rm arctan} \hspace{0.1cm}{\left(\sin(\omega_{\rm N} \hspace{0.05cm} t )\right)}.
- The maximum value of the sine function is 1. From this follows:
- \phi_{\rm max} = \arctan (1) \; \underline{= \pi /4 } \; \Rightarrow \; \underline{45^\circ}.