Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.5Z: Simple Phase Modulator"

From LNTwww
Line 4: Line 4:
  
 
[[File:P_ID757__Sig_Z_4_5.png|right|frame|Modell des betrachteten Phasenmodulators]]
 
[[File:P_ID757__Sig_Z_4_5.png|right|frame|Modell des betrachteten Phasenmodulators]]
Die Grafik zeigt eine recht einfache Anordnung zur Approximation eines Phasenmodulators. Alle Signale seien hierbei dimensionslose Größen.
+
The diagram shows a quite simple arrangement for approximating a phase modulator. All signals are dimensionless quantities.
  
Das sinusförmige Nachrichtensignal  q(t)  der Frequenz  fN=10 kHz  wird mit dem Signal  m(t)  multipliziert, das sich aus dem cosinusförmigen Trägersignal  z(t)  durch Phasenverschiebung um  ϕ=90  ergibt:
+
The sinusoidal message signal  q(t)  of frequency  fN=10 kHz  is multiplied by the signal  m(t) , which results from the cosinusoidal carrier signal  z(t)  by phase shifting by  ϕ=90 :
 
:m(t)=cos(ωTt+90).
 
:m(t)=cos(ωTt+90).
  
Anschließend wird das Signal  z(t)  mit der Frequenz  fT=1 MHz  noch direkt addiert.
+
Then the signal  z(t)  with the frequency  fT=1 MHz  is still added directly.
  
Zur Abkürzung werden in dieser Aufgabe auch verwendet:  
+
For abbreviation purposes, this task also uses:
*die Differenzfrequenz  fΔ=fTfN=0.99 MHz,  
+
*the difference frequency  fΔ=fTfN=0.99 MHz,  
*die Summenfrequenz  fΣ=fT+fN=1.01 MHz,  
+
*the sum frequency  fΣ=fT+fN=1.01 MHz,  
*die beiden Kreisfrequenzen  ωΔ=2πfΔ  und  ωΣ=2πfΣ.
+
*the two angular frequencies  ωΔ=2πfΔ  and  ωΣ=2πfΣ.
  
  
Line 22: Line 22:
  
  
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum  Kapitel  [[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function|Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion]].
+
*This exercise belongs to the chapter  [[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function|Equivalent Low Pass Signal and Its Spectral Function]].
 
   
 
   
*Berücksichtigen Sie die trigonomischen Umformungen
+
*Consider the trigonomic transformations
 
:sin(α)cos(β)=1/2sin(αβ)+1/2sin(α+β),
 
:sin(α)cos(β)=1/2sin(αβ)+1/2sin(α+β),
 
:sin(α)sin(β)=1/2cos(αβ)1/2cos(α+β).
 
:sin(α)sin(β)=1/2cos(αβ)1/2cos(α+β).
Line 31: Line 31:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der folgenden Gleichungen beschreiben&nbsp; s(t)&nbsp; in richtiger Weise?
+
{Which of the following equations correctly describe&nbsp; s(t)&nbsp;?
 
|type="[]"}
 
|type="[]"}
 
+ s(t)=cos(ωTt)q(t)sin(ωTt).
 
+ s(t)=cos(ωTt)q(t)sin(ωTt).
Line 42: Line 42:
  
  
{Berechnen Sie das äquivalente Tiefpass-Signal&nbsp; sTP(t). Welche Inphase– und Quadtraturkomponente ergeben sich zum Zeitpunkt&nbsp; t=0?
+
{Calculate the equivalent low pass signal&nbsp; sTP(t). What are the inphase and quadrature components at time&nbsp; t=0?
 
|type="{}"}
 
|type="{}"}
 
sI(t=0) =   { 1 3% }
 
sI(t=0) =   { 1 3% }
Line 48: Line 48:
  
  
{Welche der folgenden Aussagen treffen für die Ortskurve&nbsp; sTP(t) zu?
+
{Which of the following statements are true for the locus curve&nbsp; sTP(t) zu?
 
|type="[]"}
 
|type="[]"}
- Die Ortskurve ist ein Kreisbogen.
+
- The locus curve is a circular arc.
- Die Ortskurve ist eine horizontale Gerade.
+
- The locus curve is a horizontal straight line.
+ Die Ortskurve ist eine vertikale Gerade.
+
+ The locus curve is a vertical straight line.
  
  
{Berechnen Sie den Betrag&nbsp; a(t), insbesondere dessen Maximal– und Minimalwert.
+
{Calculate the magnitude&nbsp; a(t), in particular its maximum and minimum values.
 +
 
 
|type="{}"}
 
|type="{}"}
 
amax =  { 1.414 3% }
 
amax =  { 1.414 3% }
Line 61: Line 62:
  
  
{Wie lautet die Phasenfunktion&nbsp; ϕ(t). Wie groß ist deren Maximalwert?
+
{What is the phase function&nbsp; ϕ(t). What is its maximum value?
|type="{}"}
+
 
ϕmax =  { 45 3% } &nbsp;$\text{Grad}$
+
ϕmax =  { 45 3% } &nbsp;$\text{deg}$
  
  
Line 69: Line 70:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  Richtig sind <u>der erste und der letzte Vorschlag</u>:
+
'''(1)'''&nbsp;  <u>The first and last suggestions</u> are correct:
*Durch die Phasenverschiebung um&nbsp; ϕ=90&nbsp; wird aus der Cosinus– die Minus–Sinusfunktion.  
+
*Due to the phase shift by&nbsp; ϕ=90&nbsp; the cosine function becomes the minus-sine function.
*Mit&nbsp; q(t)=sin(ωNt)&nbsp; gilt:
+
*With&nbsp; q(t)=sin(ωNt)&nbsp; holds:
 
:$${s(t)}  =  \cos({ \omega_{\rm T}\hspace{0.05cm} t }) -  \sin({
 
:$${s(t)}  =  \cos({ \omega_{\rm T}\hspace{0.05cm} t }) -  \sin({
 
\omega_{\rm T}\hspace{0.05cm} t }) \cdot \sin({ \omega_{\rm
 
\omega_{\rm T}\hspace{0.05cm} t }) \cdot \sin({ \omega_{\rm
Line 82: Line 83:
  
  
'''(2)'''&nbsp;  Das Spektrum des analytischen Signals lautet:
+
'''(2)'''&nbsp;  The spectrum of the analytical signal is:
 
:$$S_{\rm +}(f) = \delta (f - f_{\rm T}) - 0.5 \cdot \delta (f -
 
:$$S_{\rm +}(f) = \delta (f - f_{\rm T}) - 0.5 \cdot \delta (f -
 
f_{\rm \Delta})+ 0.5 \cdot \delta (f - f_{\rm \Sigma}) .$$
 
f_{\rm \Delta})+ 0.5 \cdot \delta (f - f_{\rm \Sigma}) .$$
*Durch Verschiebung um&nbsp; fT&nbsp; kommt man zum Spektrum des äquivalenten Tiefpass-Signals:
+
*By shitfing&nbsp; fT&nbsp; one arrives at the spectrum of the equivalent low pass signal:
 
:$$S_{\rm TP}(f) = \delta (f ) - 0.5 \cdot \delta (f + f_{\rm N})+
 
:$$S_{\rm TP}(f) = \delta (f ) - 0.5 \cdot \delta (f + f_{\rm N})+
 
0.5 \cdot \delta (f - f_{\rm N}) .$$
 
0.5 \cdot \delta (f - f_{\rm N}) .$$
*Dies führt zu der Zeitfunktion
+
*This leads to the time function
 
:$$s_{\rm TP}(t) = {\rm 1 } - 0.5 \cdot {\rm e}^{{-\rm
 
:$$s_{\rm TP}(t) = {\rm 1 } - 0.5 \cdot {\rm e}^{{-\rm
 
j}\hspace{0.05cm} \omega_{\rm N} \hspace{0.05cm} t }+ 0.5 \cdot
 
j}\hspace{0.05cm} \omega_{\rm N} \hspace{0.05cm} t }+ 0.5 \cdot
 
{\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm N} \hspace{0.05cm} t }
 
{\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm N} \hspace{0.05cm} t }
 
= 1 + {\rm j} \cdot \sin(\omega_{\rm N} \hspace{0.05cm} t ).$$
 
= 1 + {\rm j} \cdot \sin(\omega_{\rm N} \hspace{0.05cm} t ).$$
*Zum Zeitpunkt&nbsp; t=0 ist sTP(t)=1, also reell. Somit gilt:
+
*At time&nbsp; t=0 ist sTP(t)=1, is real. Thus:
  
 
:* sI(t=0)=Re[sTP(t=0)]=1_,
 
:* sI(t=0)=Re[sTP(t=0)]=1_,
Line 101: Line 102:
  
  
[[File:P_ID762__Sig_Z_4_5_a.png|right|frame|Ortskurve eines einfachen Phasenmodulators]]
+
[[File:P_ID762__Sig_Z_4_5_a.png|right|frame|Locus curve of a simple phase modulator]]
'''(3)'''&nbsp;  Die Ortskurve ist eine vertikale Gerade &nbsp; &rArr; &nbsp;  <u>Vorschlag 3</u> mit folgenden Werten:
+
'''(3)'''&nbsp;  The locus curve is a vertical straight line &nbsp; &rArr; &nbsp;  <u>Proposition 3</u> with the following values:
 
:$$s_{\rm TP}(t = 0) = s_{\rm TP}(t = {\rm 50 \hspace{0.05cm} &micro; s})
 
:$$s_{\rm TP}(t = 0) = s_{\rm TP}(t = {\rm 50 \hspace{0.05cm} &micro; s})
 
= \text{ ...} = 1,$$
 
= \text{ ...} = 1,$$
Line 111: Line 112:
  
  
'''(4)'''&nbsp;  Der Betrag (die Zeigerlänge) schwankt zwischen&nbsp; amax=21.414_&nbsp; und&nbsp; amin=1_. Es gilt:
+
'''(4)'''&nbsp;  The magnitude (the pointer length) varies between &nbsp; amax=21.414_&nbsp; and&nbsp; amin=1_. It holds:
 
:a(t)=1+sin2(ωNt).
 
:a(t)=1+sin2(ωNt).
Bei idealer Phasenmodulation müsste dagegen die Hüllkurve&nbsp; a(t)&nbsp; konstant sein.
+
With ideal phase modulation, on the other hand, the envelope&nbsp; a(t)&nbsp; would have to be constant.
  
  
'''(5)'''&nbsp;  Der Realteil ist stets&nbsp; 1, der Imaginärteil gleich&nbsp; sin(ωNt). Daraus folgt die Phasenfunktion:
+
'''(5)'''&nbsp;  The real part is always&nbsp; 1, the imaginary part equal to&nbsp; sin(ωNt). From this follows the phase function:
 
:$$\phi(t)= {\rm arctan} \hspace{0.1cm}{\left(\sin(\omega_{\rm N}
 
:$$\phi(t)= {\rm arctan} \hspace{0.1cm}{\left(\sin(\omega_{\rm N}
 
\hspace{0.05cm} t )\right)}.$$
 
\hspace{0.05cm} t )\right)}.$$
*Der Maximalwert der Sinusfunktion ist&nbsp; 1. Daraus folgt:
+
*The maximum value of the sine function is&nbsp; 1. From this follows:
 
:ϕmax=arctan(1)=π/4_45_.  
 
:ϕmax=arctan(1)=π/4_45_.  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 16:59, 10 February 2021

Modell des betrachteten Phasenmodulators

The diagram shows a quite simple arrangement for approximating a phase modulator. All signals are dimensionless quantities.

The sinusoidal message signal  q(t)  of frequency  fN=10 kHz  is multiplied by the signal  m(t) , which results from the cosinusoidal carrier signal  z(t)  by phase shifting by  ϕ=90 :

m(t)=cos(ωTt+90).

Then the signal  z(t)  with the frequency  fT=1 MHz  is still added directly.

For abbreviation purposes, this task also uses:

  • the difference frequency  fΔ=fTfN=0.99 MHz,
  • the sum frequency  fΣ=fT+fN=1.01 MHz,
  • the two angular frequencies  ωΔ=2πfΔ  and  ωΣ=2πfΣ.




Hints:

  • Consider the trigonomic transformations
sin(α)cos(β)=1/2sin(αβ)+1/2sin(α+β),
sin(α)sin(β)=1/2cos(αβ)1/2cos(α+β).


Questions

1

Which of the following equations correctly describe  s(t) ?

s(t)=cos(ωTt)q(t)sin(ωTt).
s(t)=cos(ωTt)+q(t)cos(ωTt).
s(t)=cos(ωTt)+0.5sin(ωΔt)+0.5sin(ωΣt).
s(t)=cos(ωTt)0.5cos(ωΔt)+0.5cos(ωΣt).

2

Calculate the equivalent low pass signal  sTP(t). What are the inphase and quadrature components at time  t=0?

sI(t=0) = 

sQ(t=0) = 

3

Which of the following statements are true for the locus curve  sTP(t) zu?

The locus curve is a circular arc.
The locus curve is a horizontal straight line.
The locus curve is a vertical straight line.

4

Calculate the magnitude  a(t), in particular its maximum and minimum values.

amax = 

amin = 


Solution

(1)  The first and last suggestions are correct:

  • Due to the phase shift by  ϕ=90  the cosine function becomes the minus-sine function.
  • With  q(t)=sin(ωNt)  holds:
s(t)=cos(ωTt)sin(ωTt)sin(ωNt)=cos(ωTt)0.5cos((ωTωN)t)+0.5cos((ωT+ωN)t).


(2)  The spectrum of the analytical signal is:

S+(f)=δ(ffT)0.5δ(ffΔ)+0.5δ(ffΣ).
  • By shitfing  fT  one arrives at the spectrum of the equivalent low pass signal:
STP(f)=δ(f)0.5δ(f+fN)+0.5δ(ffN).
  • This leads to the time function
sTP(t)=10.5ejωNt+0.5ejωNt=1+jsin(ωNt).
  • At time  t=0 ist sTP(t)=1, is real. Thus:
  • sI(t=0)=Re[sTP(t=0)]=1_,
  • sQ(t=0)=Ime[sTP(t=0)]=0_.


Locus curve of a simple phase modulator

(3)  The locus curve is a vertical straight line   ⇒   Proposition 3 with the following values:

s_{\rm TP}(t = 0) = s_{\rm TP}(t = {\rm 50 \hspace{0.05cm} µ s}) = \text{ ...} = 1,
s_{\rm TP}(t = {\rm 25 \hspace{0.05cm} µ s}) = s_{\rm TP}(t = {\rm 125 \hspace{0.05cm} \mu s}) = \text{ ...} = 1 + {\rm j},
s_{\rm TP}(t = {\rm 75 \hspace{0.05cm} µ s}) = s_{\rm TP}(t = {\rm 175 \hspace{0.05cm} \mu s}) = \text{ ...} = 1 - {\rm j}.


(4)  The magnitude (the pointer length) varies between   a_{\rm max} = \sqrt{2}\; \underline{\approx 1.414}  and  a_{\rm min} \;\underline{= 1}. It holds:

a(t) = \sqrt{1 + \sin^2(\omega_{\rm N} \hspace{0.05cm} t )}.

With ideal phase modulation, on the other hand, the envelope  a(t)  would have to be constant.


(5)  The real part is always  1, the imaginary part equal to  \sin(\omega_{\rm N} \cdot t) . From this follows the phase function:

\phi(t)= {\rm arctan} \hspace{0.1cm}{\left(\sin(\omega_{\rm N} \hspace{0.05cm} t )\right)}.
  • The maximum value of the sine function is  1. From this follows:
\phi_{\rm max} = \arctan (1) \; \underline{= \pi /4 } \; \Rightarrow \; \underline{45^\circ}.