Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 5.1: Sampling Theorem"

From LNTwww
Line 5: Line 5:
 
[[File:P_ID1126__Sig_A_5_1.png|right|frame|Zur Abtastung eines analogen Signals  x(t)]]
 
[[File:P_ID1126__Sig_A_5_1.png|right|frame|Zur Abtastung eines analogen Signals  x(t)]]
  
Gegeben ist ein Analogsignal  x(t)  entsprechend der Skizze:  
+
Given is an analogue signal  x(t)  according to the sketch:  
*Bekannt ist, dass dieses Signal keine höheren Frequenzen als  BNF=4 kHz  beinhaltet.  
+
*It is known that this signal does not contain any frequencies higher than  BNF=4 kHz .  
*Durch Abtastung mit der Abtastrate  fA  erhält man das in der Grafik rot skizzierte Signal  xA(t).
+
*By sampling with the sampling rate  fA , the signal  xA(t) sketched in red in the diagram is obtained.
*Zur Signalrekonstruktion wird ein Tiefpass verwendet, für dessen Frequenzgang gilt:
+
*For signal reconstruction a low-pass filter is used, for whose frequency response applies:
 
   
 
   
 
:$$H(f)  = \left\{ \begin{array}{c} 1  \\
 
:$$H(f)  = \left\{ \begin{array}{c} 1  \\
Line 18: Line 18:
 
\end{array}$$
 
\end{array}$$
  
Der Bereich zwischen den Frequenzen  f1  und  f2>f1  ist für die Lösung dieser Aufgabe nicht relevant.
+
The range between the frequencies  f1  and  f2>f1  is not relevant for the solution of this task.
  
Die Eckfrequenzen  f1  und  f2  sind so zu bestimmen, dass das Ausgangssignal  y(t)  des Tiefpasses mit dem Signal  x(t)  exakt übereinstimmt.
+
The corner frequencies  f1  and  f2  are to be determined in such a way that the output signal  y(t)  of the low-pass filter exactly matches the signal  x(t) .
  
  
Line 30: Line 30:
  
  
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum  Kapitel  [[Signal_Representation/Time_Discrete_Signal_Representation|Zeitdiskrete Signaldarstellung]].
+
*This task belongs to the chapter  [[Signal_Representation/Time_Discrete_Signal_Representation|Time Discrete Signal Representation]].
 
   
 
   
*Zu der hier behandelten Thematik gibt es ein interaktives Applet:  [[Applets:Abtastung_periodischer_Signale_und_Signalrekonstruktion_(Applet)|Abtastung periodischer Signale & Signalrekonstruktion]]
+
*There is an interactive applet for the topic dealt with here:  [[Applets:Abtastung_periodischer_Signale_und_Signalrekonstruktion_(Applet)|Abtastung periodischer Signale & Signalrekonstruktion]]
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Ermitteln Sie aus der Grafik die zugrundeliegende Abtastrate.
+
{Determine the underlying sampling rate from the graph.
 
|type="{}"}
 
|type="{}"}
 
fA =   { 10 3% } &nbsp;kHz
 
fA =   { 10 3% } &nbsp;kHz
  
{Bei welchen Frequenzen besitzt die Spektralfunktion&nbsp;  XA(f)&nbsp; mit Sicherheit <u>keine Anteile</u>?
+
{At which frequencies does the spectral function&nbsp;  XA(f)&nbsp; have <u>no components</u> with certainty?
 
|type="[]"}
 
|type="[]"}
 
- f=2.5 kHz,
 
- f=2.5 kHz,
Line 50: Line 50:
 
+ f=34.5 kHz.
 
+ f=34.5 kHz.
  
{Wie groß muss die untere Eckfrequenz&nbsp; f1&nbsp; mindestens sein, damit das Signal perfekt rekonstruiert wird?
+
{What is the minimum size of the lower cut-off frequency&nbsp; f1&nbsp; that the signal is perfectly reconstructed?
 
|type="{}"}
 
|type="{}"}
 
f1, min = { 4 3% } &nbsp;kHz
 
f1, min = { 4 3% } &nbsp;kHz
  
{Wie groß darf die obere Eckfrequenz&nbsp; f2&nbsp; höchstens sein, damit das Signal perfekt rekonstruiert wird?
+
{What is the maximum size of the upper corner frequency&nbsp; f2&nbsp; for the signal to be perfectly reconstructed?
 
|type="{}"}
 
|type="{}"}
 
f2, max = { 6 3% } &nbsp;kHz
 
f2, max = { 6 3% } &nbsp;kHz
Line 61: Line 61:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  Der Abstand zweier benachbarter Abtastwerte beträgt&nbsp; TA=0.1 ms. Somit erhält man für die Abtastrate&nbsp; fA=1/TA=10 kHz_.
+
'''(1)'''&nbsp;  The distance between two adjacent samples is&nbsp; TA=0.1 ms. Thus, for the sampling rate&nbsp; fA=1/TA=10 kHz_is obtained.
  
  
[[File:P_ID1127__Sig_A_5_1_b.png|450px|right|frame|Spektrum&nbsp; XA(f)&nbsp; des abgetasteten Signals (schematische Darstellung)]]
+
[[File:P_ID1127__Sig_A_5_1_b.png|450px|right|frame|Spectrum&nbsp; XA(f)&nbsp; of the sampled signal (schematic representation)]]
'''(2)'''&nbsp;  Richtig sind die <u>Lösungsvorschläge 2 und 4</u>:
+
'''(2)'''&nbsp;  Proposed <u>solutions 2 and 4</u> are correct:
*Das Spektrum&nbsp; XA(f)&nbsp; des abgetasteten Signals erhält man aus&nbsp; X(f)&nbsp; durch periodische Fortsetzung im Abstand&nbsp; fA=10 kHz.  
+
*The spectrum&nbsp; XA(f)&nbsp; of the sampled signal is obtained from&nbsp; X(f)&nbsp; by periodic continuation at a distance of&nbsp; fA=10 kHz.  
*Aus der Skizze erkennt man, dass&nbsp; XA(f)&nbsp; durchaus Anteile bei&nbsp; f=2.5 kHz&nbsp; und&nbsp;  f=6.5 kHz&nbsp; besitzen kann.
+
*From the sketch you can see that&nbsp; XA(f)&nbsp; can have parts at&nbsp; f=2.5 kHz&nbsp; and&nbsp;  f=6.5 kHz&nbsp;.
* Dagegen gibt es  bei&nbsp;  f=5.5 kHz&nbsp; keine Anteile.  
+
*In contrast, there are no components at&nbsp;  f=5.5 kHz&nbsp;.
*Auch bei&nbsp;  f=34.5 kHz&nbsp; wird  auf jeden Fall&nbsp; XA(f)=0&nbsp; gelten.  
+
*Also at&nbsp;  f=34.5 kHz&nbsp; will be valid in any case.&nbsp; XA(f)=0&nbsp;.
 
<br clear=all>
 
<br clear=all>
'''(3)'''&nbsp; Es muss sichergestellt sein, dass alle Frequenzen des Analogsignals mit&nbsp; H(f)=1&nbsp; bewertet werden.  
+
'''(3)'''&nbsp; It must be ensured that all frequencies of the analogue signal are weighted with&nbsp; H(f)=1&nbsp;.
*Daraus folgt entsprechend der Skizze:  
+
*From this follows according to the sketch:  
  
 
:f1, min=BNF=4 kHz_.
 
:f1, min=BNF=4 kHz_.
  
  
'''(4)'''&nbsp; Ebenso muss garantiert werden, dass alle Spektralanteile von&nbsp; XA(f), die in&nbsp; X(f)&nbsp; nicht enthalten sind, durch den Tiefpass entfernt werden.  
+
'''(4)'''&nbsp; Likewise, it must be guaranteed that all spectral components of&nbsp; XA(f), that are not contained in&nbsp; X(f)&nbsp; are removed by the low-pass filter.  
*Entsprechend der Skizze muss also gelten:
+
*According to the sketch, the following must therefore apply:
  
 
:f_{2, \ \text{max}} = f_{\rm A} – B_{\rm NF} \;\underline{= 6 \ \text{kHz}}.
 
:f_{2, \ \text{max}} = f_{\rm A} – B_{\rm NF} \;\underline{= 6 \ \text{kHz}}.

Revision as of 13:56, 1 March 2021

Zur Abtastung eines analogen Signals  x(t)

Given is an analogue signal  x(t)  according to the sketch:

  • It is known that this signal does not contain any frequencies higher than  B_{\rm NF} = 4 \ \text{kHz} .
  • By sampling with the sampling rate  f_{\rm A} , the signal  x_{\rm A}(t) sketched in red in the diagram is obtained.
  • For signal reconstruction a low-pass filter is used, for whose frequency response applies:
H(f) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c} {\rm{{\rm{f\ddot{u}r}}}} \\ {\rm{{\rm{f\ddot{u}r}}}} \\ \end{array}\begin{array}{*{5}c} |f| < f_1 \hspace{0.05cm}, \\ |f| > f_2 \hspace{0.05cm} \\ \end{array}

The range between the frequencies  f_1  and  f_2 > f_1  is not relevant for the solution of this task.

The corner frequencies  f_1  and  f_2  are to be determined in such a way that the output signal  y(t)  of the low-pass filter exactly matches the signal  x(t) .





Hints:


Questions

1

Determine the underlying sampling rate from the graph.

f_{\rm A}\ = \

 \text{kHz}

2

At which frequencies does the spectral function  X_{\rm A}(f)  have no components with certainty?

f = 2.5 \ \text{kHz},
f= 5.5 \ \text{kHz},
f= 6.5 \ \text{kHz},
f= 34.5 \ \text{kHz}.

3

What is the minimum size of the lower cut-off frequency  f_1  that the signal is perfectly reconstructed?

f_{1,\ \text{min}}\ = \

 \text{kHz}

4

What is the maximum size of the upper corner frequency  f_2  for the signal to be perfectly reconstructed?

f_{2,\ \text{max}}\ = \

 \text{kHz}


Solution

(1)  The distance between two adjacent samples is  T_{\rm A} = 0.1 \ \text{ms}. Thus, for the sampling rate  f_{\rm A} = 1/ T_{\rm A} \;\underline {= 10 \ \text{kHz}}is obtained.


Spectrum  X_{\rm A}(f)  of the sampled signal (schematic representation)

(2)  Proposed solutions 2 and 4 are correct:

  • The spectrum  X_{\rm A}(f)  of the sampled signal is obtained from  X(f)  by periodic continuation at a distance of  f_{\rm A} = 10 \ \text{kHz}.
  • From the sketch you can see that  X_{\rm A}(f)  can have parts at  f = 2.5 \ \text{kHz}  and  f = 6.5 \ \text{kHz} .
  • In contrast, there are no components at  f = 5.5 \ \text{kHz} .
  • Also at  f = 34.5 \ \text{kHz}  will be valid in any case.  X_{\rm A}(f) = 0 .


(3)  It must be ensured that all frequencies of the analogue signal are weighted with  H(f) = 1 .

  • From this follows according to the sketch:
f_{1, \ \text{min}} = B_{\rm NF} \;\underline{= 4 \ \text{kHz}}.


(4)  Likewise, it must be guaranteed that all spectral components of  X_{\rm A}(f), that are not contained in  X(f)  are removed by the low-pass filter.

  • According to the sketch, the following must therefore apply:
f_{2, \ \text{max}} = f_{\rm A} – B_{\rm NF} \;\underline{= 6 \ \text{kHz}}.