Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 1.4Z: On the Doppler Effect"

From LNTwww
Line 59: Line 59:
 
===Solutions===
 
===Solutions===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  With the direction of travel (A), the receiver approaches the transmitter at an angle  α=0.  This gives (1) according to the relativistic equation:
+
'''(1)'''  With the driving direction  $\rm (A)$, the receiver approaches the transmitter at an angle  α=0.  This gives '''(1)''' according to the relativistic equation:
 
:$$f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c }   
 
:$$f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c }   
 
  \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm D} = f_{\rm E} - f_{\rm S}  = f_{\rm S} \cdot \left [  \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \right ]\hspace{0.3cm}
 
  \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm D} = f_{\rm E} - f_{\rm S}  = f_{\rm S} \cdot \left [  \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \right ]\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}{f_{\rm D}}/{f_{\rm S}} =  \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm}{f_{\rm D}}/{f_{\rm S}} =  \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \hspace{0.05cm}.$$
  
*With $\upsilon_1/c = 0.6$ you get
+
*With  $v_1/c = 0.6$  you get
 
:$${f_{\rm D}}/{f_{\rm S}} =  \frac{\sqrt{1 - 0.6^2}}{1 - 0.6 } - 1 = \frac{0.8}{0.4 } - 1 \hspace{0.15cm} \underline{ = 1}
 
:$${f_{\rm D}}/{f_{\rm S}} =  \frac{\sqrt{1 - 0.6^2}}{1 - 0.6 } - 1 = \frac{0.8}{0.4 } - 1 \hspace{0.15cm} \underline{ = 1}
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 2
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 2
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Correspondingly with $\upsilon_2/c = 10^{\rm –5}$:
+
*Correspondingly with  $v_2/c = 10^{\rm -5}$:
 
:$${f_{\rm D}}/{f_{\rm S}} =  \frac{\sqrt{1 - (10^{-5})^2}}{1 - (10^{-5}) } - 1  \approx 1 + 10^{-5} - 1 \hspace{0.15cm} \underline{ = 10^{-5}}
 
:$${f_{\rm D}}/{f_{\rm S}} =  \frac{\sqrt{1 - (10^{-5})^2}}{1 - (10^{-5}) } - 1  \approx 1 + 10^{-5} - 1 \hspace{0.15cm} \underline{ = 10^{-5}}
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 1.00001
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 1.00001
Line 75: Line 75:
  
  
'''(2)'''  Now the receiver moves away from the transmitter ($\alpha = 180^°$).  
+
'''(2)'''  Now the receiver moves away from the transmitter  $(\alpha = 180^°)$.  
*The receive frequency fE is lower than the transmit frequency fS and the Doppler frequency fD is negative. With ${\rm cos}(\alpha) = \ –1$ you now get
+
*The reception frequency  fE  is lower than the transmission frequency  fS  and the Doppler frequency  fD  is negative.  With  ${\rm cos}(\alpha) = \ -1$  you now get
 
:$${f_{\rm D}}/{f_{\rm S}} =  \frac{\sqrt{1 - (v/c)^2}}{1 + v/c } - 1 =
 
:$${f_{\rm D}}/{f_{\rm S}} =  \frac{\sqrt{1 - (v/c)^2}}{1 + v/c } - 1 =
 
\left\{ \begin{array}{c}  \hspace{0.15cm} \underline{  -0.5} \\ \\
 
\left\{ \begin{array}{c}  \hspace{0.15cm} \underline{  -0.5} \\ \\
Line 84: Line 84:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Converting to fE/fS results in:
+
*Converting to  fE/fS  results in:
 
:$${f_{\rm E}}/{f_{\rm S}} =   
 
:$${f_{\rm E}}/{f_{\rm S}} =   
 
\left\{ \begin{array}{c}  \hspace{0.15cm} {  0.5} \\ \\
 
\left\{ \begin{array}{c}  \hspace{0.15cm} {  0.5} \\ \\
Line 99: Line 99:
  
 
This results in the following numerical values:
 
This results in the following numerical values:
* Direction (A), v_1  = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 0.6} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 1.6,
+
* Direction  $\rm (A)$,  v_1  = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 0.6} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 1.6,
* Direction (A), v_2  = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 10^{\rm –5}} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 1.00001,
+
* Direction  $\rm (A)$,  v_2  = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 10^{\rm –5}} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 1.00001,
* Direction (B), v_1  = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ –0.6} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 0.4,
+
* Direction  $\rm (B)$,  v_1  = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ –0.6} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 0.4,
* Direction (B), v_2  = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ –10^{\rm –5}} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 0.99999.
+
* Direction  $\rm (B)$,  v_2  = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ –10^{\rm –5}} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 0.99999.
  
  
 
You can tell:  
 
You can tell:  
*For realistic speeds – including v  10000 km/h – the conventional equation (2) gives the same result as the relativistic equation (1) up to the accuracy of a pocket calculator.  
+
*For realistic speeds – including  v  10000 km/h  – the conventional equation  '''(2)'''  gives the same result as the relativistic equation  '''(1)'''  up to the accuracy of a pocket calculator.  
*With the approximation, the angles \alpha = 0^° and \alpha = 180^\circ result in the same absolute value for the Doppler frequency.  
+
*With the approximation, the angles  \alpha = 0^°  and  \alpha = 180^\circ  result in the same absolute value for the Doppler frequency.  
 
*The approximations differ only in the sign.  
 
*The approximations differ only in the sign.  
*In the relativistic equation this symmetry is no longer present. See subtasks (1) and (2).
+
*In the relativistic equation this symmetry is no longer present.  See subtasks '''(1)''' and '''(2)'''.
  
  
  
'''(4)'''  Equation (2) leads here to the result:
+
'''(4)'''  Equation '''(2)''' leads here to the result:
$$f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot {v_3}/{c} \cdot \cos(\alpha)  
+
:$$f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot {v_3}/{c} \cdot \cos(\alpha)  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
* The direction of travel (C) is perpendicular ($\alpha = 90^\circ$) to the connection line transmitter–receiver. In this case, no Doppler shift occurs:  
+
* The driving direction  $\rm (C)$  is perpendicular  $(\alpha = 90^\circ)$  to the connection line transmitter–receiver.  In this case, no Doppler shift occurs:  
 
:f_{\rm D} \ \ \underline {= \ 0}.  
 
:f_{\rm D} \ \ \underline {= \ 0}.  
* The direction of movement (D) is characterized by \alpha = \ –135^\circ. As a result:
+
* The driving direction  $\rm (D)$  is characterized by  \alpha = \ –135^\circ.  As a result:
 
:f_{\rm D} =  2 \cdot 10^{9}\,\,{\rm Hz} \cdot  \frac{30\,\,{\rm m/s}}{3 \cdot 10^{8}\,\,{\rm m/s}} \cdot  \cos(-135^{\circ}) \hspace{0.15cm} \underline{ \approx -141\,\,{\rm Hz}}  \hspace{0.05cm}.
 
:f_{\rm D} =  2 \cdot 10^{9}\,\,{\rm Hz} \cdot  \frac{30\,\,{\rm m/s}}{3 \cdot 10^{8}\,\,{\rm m/s}} \cdot  \cos(-135^{\circ}) \hspace{0.15cm} \underline{ \approx -141\,\,{\rm Hz}}  \hspace{0.05cm}.
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 16:17, 7 December 2020

Directions of movement  \rm (A), ...

The Doppler effect is the change in the perceived frequency of waves of any kind as the source (transmitter) and observer (receiver) move relative to each other.

Here we always assume a static transmitter, while the receiver can move in four different directions  \rm (A),  \rm (B),  \rm (C)  and  \rm (D)  (see diagram).

Different speeds are to be investigated:

  • an unrealistically high speed  v_1 = 0.6 \cdot c = 1.8 \cdot 10^8 \ {\rm m/s},
  • the maximum speed  v_2 = 3 \ {\rm km/s} \ (10800 \ {\rm km/h})  during unmanned test flight,
  • approximately the maximum speed  v_3 = 30 \ {\rm m/s} = 108 \ \ \rm km/h  on federal roads.


The equations given in the theoretical section for the reception frequency are

  • taking into account the theory of relativity (briefly referred to as „relativistic”):
{\rm equation \hspace{0.15cm}(1):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c \cdot \cos(\alpha)} \hspace{0.05cm},
  • without consideration of relativistic properties (referred to as „conventional”):
{\rm equation \hspace{0.15cm}(2):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \big [ 1 + {v}/{c} \cdot \cos(\alpha) \big ] \hspace{0.05cm}.



Notes:



Questions

1

Which Doppler frequencies result for the speeds  v_1  and  v_2  in driving direction  \rm (A)  with equation (1)?

v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \

v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \

\cdot \ 10^{-5}

2

Which Doppler frequencies are obtained for the opposite driving direction  \rm (B)  with equation (1).

v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \

v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \

\cdot \ 10^{-5}

3

Which Doppler frequencies are obtained under otherwise identical conditions with equation (2)?

{\rm direction \ (A)}, \ \ v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \

\hspace{2.96cm} v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \

\cdot \ 10^{\rm –5}
{\rm direction \ (B)}, \ \ v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \

\hspace{2.96cm} v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \

\cdot \ 10^{\rm –5}

4

Let f_{\rm S} = 2 \ \rm GHz.  Which Doppler frequencies result for the driving direction  \rm (C)  and  \rm (D)  with  equation (2)?

{\rm direction \ (C)}, \ \ v_3\text{:} \hspace{0.4cm} f_{\rm D} \ = \

\ \ \rm Hz
{\rm direction \ (D)}, \ \ v_3\text{:} \hspace{0.4cm} f_{\rm D} \ = \

\ \ \ \rm Hz


Solutions

(1)  With the driving direction  \rm (A), the receiver approaches the transmitter at an angle  \alpha = 0.  This gives (1) according to the relativistic equation:

f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot \left [ \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \right ]\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \hspace{0.05cm}.
  • With  v_1/c = 0.6  you get
{f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - 0.6^2}}{1 - 0.6 } - 1 = \frac{0.8}{0.4 } - 1 \hspace{0.15cm} \underline{ = 1} \hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 2 \hspace{0.05cm}.
  • Correspondingly with  v_2/c = 10^{\rm -5}:
{f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - (10^{-5})^2}}{1 - (10^{-5}) } - 1 \approx 1 + 10^{-5} - 1 \hspace{0.15cm} \underline{ = 10^{-5}} \hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 1.00001 \hspace{0.05cm}.


(2)  Now the receiver moves away from the transmitter  (\alpha = 180^°).

  • The reception frequency  f_{\rm E}  is lower than the transmission frequency  f_{\rm S}  and the Doppler frequency  f_{\rm D}  is negative.  With  {\rm cos}(\alpha) = \ -1  you now get
{f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - (v/c)^2}}{1 + v/c } - 1 = \left\{ \begin{array}{c} \hspace{0.15cm} \underline{ -0.5} \\ \\ \hspace{0.15cm} \underline{ -10^{-5}} \end{array} \right.\quad \begin{array}{*{1}c} \hspace{-0.2cm}{\rm f\ddot{u}r}\hspace{0.15cm} v_1/c = 0.6 \\ \\ {\rm f\ddot{u}r}\hspace{0.15cm} v_2/c = 10^{-5} \\ \end{array} \hspace{0.05cm}.
  • Converting to  f_{\rm E}/f_{\rm S}  results in:
{f_{\rm E}}/{f_{\rm S}} = \left\{ \begin{array}{c} \hspace{0.15cm} { 0.5} \\ \\ \hspace{0.15cm} { 0.99999} \end{array} \right.\quad \begin{array}{*{1}c} \hspace{-0.2cm}{\rm f\ddot{u}r}\hspace{0.15cm} v_1/c = 0.6 \\ \\ {\rm f\ddot{u}r}\hspace{0.15cm} v_2/c = 10^{-5} \\ \end{array} \hspace{0.05cm}.


(3)  The following equations apply here:

f_{\rm E} = f_{\rm S} \cdot \left [ 1 + {v}/{c} \cdot \cos(\alpha) \right ] \Rightarrow \hspace{0.3cm}{f_{\rm D}}/{f_{\rm S}} = {v}/{c} \cdot \cos(\alpha) \hspace{0.05cm}.

This results in the following numerical values:

  • Direction  \rm (A)v_1 = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 0.6} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 1.6,
  • Direction  \rm (A)v_2 = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 10^{\rm –5}} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 1.00001,
  • Direction  \rm (B)v_1 = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ –0.6} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 0.4,
  • Direction  \rm (B)v_2 = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ –10^{\rm –5}} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 0.99999.


You can tell:

  • For realistic speeds – including  v \ \approx \ 10000 \ {\rm km/h}  – the conventional equation  (2)  gives the same result as the relativistic equation  (1)  up to the accuracy of a pocket calculator.
  • With the approximation, the angles  \alpha = 0^°  and  \alpha = 180^\circ  result in the same absolute value for the Doppler frequency.
  • The approximations differ only in the sign.
  • In the relativistic equation this symmetry is no longer present.  See subtasks (1) and (2).


(4)  Equation (2) leads here to the result:

f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot {v_3}/{c} \cdot \cos(\alpha) \hspace{0.05cm}.
  • The driving direction  \rm (C)  is perpendicular  (\alpha = 90^\circ)  to the connection line transmitter–receiver.  In this case, no Doppler shift occurs:
f_{\rm D} \ \ \underline {= \ 0}.
  • The driving direction  \rm (D)  is characterized by  \alpha = \ –135^\circ.  As a result:
f_{\rm D} = 2 \cdot 10^{9}\,\,{\rm Hz} \cdot \frac{30\,\,{\rm m/s}}{3 \cdot 10^{8}\,\,{\rm m/s}} \cdot \cos(-135^{\circ}) \hspace{0.15cm} \underline{ \approx -141\,\,{\rm Hz}} \hspace{0.05cm}.