Difference between revisions of "Aufgaben:Exercise 3.2Z: Sinc-Squared Spectrum with Diracs"

From LNTwww
Line 60: Line 60:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
[[File:P_ID498__Sig_Z_3_2_a_neu.png|right|frame|Fläche des Dreieckimpulses]]
 
[[File:P_ID498__Sig_Z_3_2_a_neu.png|right|frame|Fläche des Dreieckimpulses]]
'''(1)'''   Die einseitige Dauer des symmetrischen Dreieckimpulses beträgt  $T = 1/f_0\hspace{0.15 cm}\underline{ = 5 \,{\rm µ s}}$.  
+
'''(1)'''   The one-sided duration of the symmetrical triangular pulse is  $T = 1/f_0\hspace{0.15 cm}\underline{ = 5 \,{\rm µ s}}$.  
  
*Der Spektralwert  $X_0 = X_1(f = 0)$  gibt die Impulsfläche von  $x_1(t)$  an.  
+
*The spectral value  $X_0 = X_1(f = 0)$  indicates the pulse area of  $x_1(t)$  an.  
*Diese ist gleich  ${A} \cdot {T}$.  Daraus folgt:
+
*This is equal to  ${A} \cdot {T}$.  From this follows:
 
:$$A = \frac{X_0 }{T}  = \frac{ 10^{-5}\rm V/Hz }{5 \cdot 10^{-6}{\rm s}}\hspace{0.15 cm}\underline{= 2\;{\rm V}}.$$
 
:$$A = \frac{X_0 }{T}  = \frac{ 10^{-5}\rm V/Hz }{5 \cdot 10^{-6}{\rm s}}\hspace{0.15 cm}\underline{= 2\;{\rm V}}.$$
  
  
'''(2)'''   Der Gleichsignalanteil ist durch das Diracgewicht bei  $f = 0$  gegeben. Man erhält  ${B} \hspace{0.15 cm}\underline{= -1 \,\text{V}}$.
+
'''(2)'''   The DC component is given by the Dirac weight at  $f = 0$ . One obtains  ${B} \hspace{0.15 cm}\underline{= -1 \,\text{V}}$.
  
  
'''(3)'''   Die beiden Spektrallinien bei  $\pm f_0$  ergeben zusammen ein Cosinussignal mit der Amplitude  ${C} \hspace{0.15 cm}\underline{= 1 \text{V}}$.
+
'''(3)'''   The two spectral lines at  $\pm f_0$  together give a cosine signal with amplitude  ${C} \hspace{0.15 cm}\underline{= 1 \text{V}}$.
  
  
'''(4)'''   Der Maximalwert tritt zum Zeitpunkt  ${t} = 0$  auf  (hier sind Dreieckimpuls und Cosinussignal maximal):  
+
'''(4)'''   The maximum value occurs at time  ${t} = 0$    (here the triangular pulse and cosine signal are maximum):  
 
:$$x_{\text{max}} = A + B + C \hspace{0.15 cm}\underline{= +2 \text{V}}.$$  
 
:$$x_{\text{max}} = A + B + C \hspace{0.15 cm}\underline{= +2 \text{V}}.$$  
  
*Die minimalen Werte von  ${x(t)}$  ergeben sich dann, wenn der Dreieckimpuls abgeklungen ist und die Cosinusfunktion den Wert  $–\hspace{-0.08 cm}1 \,\text{V}$  liefert:  
+
*The minimum values of  ${x(t)}$  result when the triangular pulse has decayed and the cosine function delivers the value  $–\hspace{-0.08 cm}1 \,\text{V}$  liefert:  
 
:$$x_\text{min} = {B} - {C}\hspace{0.15 cm}\underline{ = -2\, \text{V}}.$$
 
:$$x_\text{min} = {B} - {C}\hspace{0.15 cm}\underline{ = -2\, \text{V}}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 21:06, 20 January 2021

$\rm si$-Quadrat-Spektrum mit Diracs

The sketched spectrum  ${X(f)}$  of a time signal  ${x(t)}$  is composed of

  • a continuous component  $X_1(f)$,
  • plus three dirac-shaped spectral lines.


The continuous component with  $f_0 = 200\, \text{kHz}$  and  $X_0 = 10^{–5} \text{ V/Hz}$is as follows:

$$X_1( f ) = X_0 \cdot {\mathop{\rm si}\nolimits} ^2 ( {\pi {f}/{f_0}} ),\quad {\rm where is}\quad {\mathop{\rm si}\nolimits} (x) = {\sin (x)}/{x}.$$

The spectral line at  $f = 0$  has the weight  $–\hspace{-0.08cm}1\,\text{V}$. In addition, there are two lines at frequencies  $\pm f_0$, both with weight  $0.5\,\text{V}$.




Hints:

  • It can be assumed as known that a triangular pulse  $y(t)$  symmetrical about  $t = 0$  with the amplitude  ${A}$  and the absolute duration  $2T$  $($i.e.:  he signal values are unequal to $ 0 $ only between  $–T$  and  $+T$ )  has the following spectral function:
$$Y( f ) = A \cdot T \cdot {\rm si}^2 ( \pi f T ).$$


Question

1

What are the values of the parameters  ${A}$  (amplitude) and  ${T}$  (one-sided duration) of the triangular signal component  $x_1(t)$?

$A\ = \ $

 $\text{V}$
$T\ = \ $

 $\text{$µ$s}$

2

What is the DC component  ${B}$  of the signal?

$B\ = \ $

 $\text{V}$

3

What is the amplitude  $C$  of the periodic component of  $x(t)$?

$C\ = \ $

 $\text{V}$

4

What are the maximum and minimum values of the signal  $x(t)$?

$x_\text{max}\ = \ $

 $\text{V}$
$x_\text{min}\hspace{0.2cm} = \ $

 $\text{V}$


Solution

Fläche des Dreieckimpulses

(1)  The one-sided duration of the symmetrical triangular pulse is  $T = 1/f_0\hspace{0.15 cm}\underline{ = 5 \,{\rm µ s}}$.

  • The spectral value  $X_0 = X_1(f = 0)$  indicates the pulse area of  $x_1(t)$  an.
  • This is equal to  ${A} \cdot {T}$.  From this follows:
$$A = \frac{X_0 }{T} = \frac{ 10^{-5}\rm V/Hz }{5 \cdot 10^{-6}{\rm s}}\hspace{0.15 cm}\underline{= 2\;{\rm V}}.$$


(2)  The DC component is given by the Dirac weight at  $f = 0$ . One obtains  ${B} \hspace{0.15 cm}\underline{= -1 \,\text{V}}$.


(3)  The two spectral lines at  $\pm f_0$  together give a cosine signal with amplitude  ${C} \hspace{0.15 cm}\underline{= 1 \text{V}}$.


(4)  The maximum value occurs at time  ${t} = 0$    (here the triangular pulse and cosine signal are maximum):

$$x_{\text{max}} = A + B + C \hspace{0.15 cm}\underline{= +2 \text{V}}.$$
  • The minimum values of  ${x(t)}$  result when the triangular pulse has decayed and the cosine function delivers the value  $–\hspace{-0.08 cm}1 \,\text{V}$  liefert:
$$x_\text{min} = {B} - {C}\hspace{0.15 cm}\underline{ = -2\, \text{V}}.$$