Difference between revisions of "Aufgaben:Exercise 5.3: Mean Square Error"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1145__Sig_A_5_3.png|250px|right|frame|Gaußimpuls, Rechteckimpuls, Spaltimpuls und einige Kenngrößen]]
+
[[File:P_ID1145__Sig_A_5_3.png|250px|right|frame|Gaussian pulse, square pulse, sinc pulse and some parameters]]
  
 
We consider three pulse-like signals, namely
 
We consider three pulse-like signals, namely
Line 74: Line 74:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welcher Bereich&nbsp; $|f| \leq  f_{\text{max}}$&nbsp; wird mit&nbsp; $N = 512$&nbsp; und&nbsp; $f_{\rm A} \cdot T = 1/8$&nbsp; erfasst?
+
{Which range&nbsp; $|f| \leq  f_{\text{max}}$&nbsp; is covered with&nbsp; $N = 512$&nbsp; and&nbsp; $f_{\rm A} \cdot T = 1/8$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$f_{\text{max}} \cdot T\ = \ $  { 32 3% }
 
$f_{\text{max}} \cdot T\ = \ $  { 32 3% }
  
{In welchem Zeitabstand&nbsp; $T_{\rm A}$&nbsp; liegen die Abtastwerte von&nbsp; $x(t)$&nbsp; vor?
+
{At what time interval&nbsp; $T_{\rm A}$&nbsp; are the sampled values of&nbsp; $x(t)$&nbsp; available?
 
|type="{}"}
 
|type="{}"}
 
$T_{\rm A}/T\ = \ $ { 0.01562 3% }
 
$T_{\rm A}/T\ = \ $ { 0.01562 3% }
  
{Aufgrund welcher Effekte erhöht sich der MQF–Wert für den Gaußimpuls, wenn man&nbsp;  $f_{\rm A} \cdot T = 1/4$&nbsp; anstelle von&nbsp; $f_{\rm A} \cdot T = 1/8$&nbsp; verwendet?
+
{Due to which effects does the MSE value for the Gaussian pulse increase when using &nbsp;  $f_{\rm A} \cdot T = 1/4$&nbsp; instead of&nbsp; $f_{\rm A} \cdot T = 1/8$&nbsp; verwendet?
 
|type="()"}
 
|type="()"}
+ Der Abbruchfehler wird signifikant vergrößert.
+
+ The truncation error is significantly increased.
- Der Aliasingfehler wird signifikant vergrößert.
+
- The aliasing error is significantly increased.
  
{Aufgrund welcher Effekte erhöht sich der MQF–Wert für den Gaußimpuls, wenn man&nbsp; $f_{\rm A} \cdot T = 1/16$&nbsp; anstelle von $f_{\rm A} \cdot T = 1/4$&nbsp; verwendet?
+
{Due to what effects does the MSE value for the Gaussian momentum increase when using&nbsp; $f_{\rm A} \cdot T = 1/16$&nbsp; instead of  $f_{\rm A} \cdot T = 1/4$&nbsp; verwendet?
 
|type="()"}
 
|type="()"}
- Der Abbruchfehler wird signifikant vergrößert.
+
- The termination error is significantly increased.termination
+ Der Aliasingfehler wird signifikant vergrößert.
+
+ The aliasing error is significantly increased.
  
{Vergleichen Sie die MQF–Werte des Rechteckimpulses&nbsp; $x_2(t)$&nbsp; mit denen des Gaußimpulses&nbsp; $x_1(t)$. Welche der folgenden Aussagen treffen zu?
+
{Compare the MQF(MSE) values of the rectangular pulse&nbsp; $x_2(t)$&nbsp; with those of the Gaussian pulse&nbsp; $x_1(t)$. Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
+ $\rm MQF$&nbsp; wird größer, da die Spektralfunktion&nbsp; $X_2(f)$&nbsp; asymptotisch langsamer abfällt als&nbsp; $X_1(f)$.
+
+ $\rm MQF$&nbsp; becomes larger because the spectral function&nbsp; $X_2(f)$&nbsp; decays asymptotically slower than&nbsp; $X_1(f)$.
+ Es dominiert der Aliasingfehler.
+
+ The aliasing error dominates.
- Es dominiert der Abbruchfehler.
+
- The termination error dominates.
  
{Vergleichen Sie die MQF–Werte des Spaltimpulses&nbsp; $x_3(t)$&nbsp; mit denen des Gaußimpulses&nbsp; $x_1(t)$. Welche der folgenden Aussagen treffen zu?
+
{Compare the MQF values of the slit pulse&nbsp; $x_3(t)$&nbsp; with those of the Gaussian pulse&nbsp; $x_1(t)$. Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
- $\rm MQF$&nbsp; wird größer, da die Spektralfunktion&nbsp; $X_3(f)$&nbsp; asymptotisch langsamer abfällt als&nbsp; $X_1(f)$.
+
- $\rm MQF$&nbsp; becomes larger because the spectral function&nbsp; $X_3(f)$&nbsp; decays asymptotically slower than&nbsp; $X_1(f)$.
- Es dominiert der Aliasingfehler.
+
- The aliasing error dominates.
+ Es dominiert der Abbruchfehler.
+
+ The termination error dominates.
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Mit den DFT–Parametern&nbsp; $N = 512$&nbsp; und&nbsp; $f_{\rm A} \cdot T = 1/8$&nbsp; folgt nach Multiplikation der beiden Größen:  
+
'''(1)'''&nbsp; With the DFT parameters&nbsp; $N = 512$&nbsp; and&nbsp; $f_{\rm A} \cdot T = 1/8$&nbsp; the following follows after multiplying the two quantities:
 
:$$f_{\rm P} \cdot T = N \cdot (f_{\rm A} \cdot T) = 64.$$
 
:$$f_{\rm P} \cdot T = N \cdot (f_{\rm A} \cdot T) = 64.$$
*Dadurch wird der Frequenzbereich&nbsp; $–f_{\rm P}/2 \leq f < f_{\rm P}/2$&nbsp; erfasst:
+
*This covers the frequency range&nbsp; $–f_{\rm P}/2 \leq f < f_{\rm P}/2$&nbsp;:
 
:$$f_{\rm max }\cdot T \hspace{0.15 cm}\underline{= 32}\hspace{0.05cm}.$$
 
:$$f_{\rm max }\cdot T \hspace{0.15 cm}\underline{= 32}\hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Die Periodifizierung der Zeitfunktion basiert auf dem Parameter&nbsp; $T_{\rm P} = 1/f_{\rm A} = 8T$.  
+
'''(2)'''&nbsp; The periodisation of the time function is based on the parameter&nbsp; $T_{\rm P} = 1/f_{\rm A} = 8T$.  
*Der Abstand zweier Abtastwerte beträgt somit
+
*The distance between two samples is therefore
 
:$$T_{\rm A}/T =  \frac{T_{\rm P}/T}{N} = \frac{8}{512}\hspace{0.15 cm}\underline{ = 0.015625}\hspace{0.05cm}.$$
 
:$$T_{\rm A}/T =  \frac{T_{\rm P}/T}{N} = \frac{8}{512}\hspace{0.15 cm}\underline{ = 0.015625}\hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 1 &nbsp; &rArr; &nbsp;  Erhöhung des Abbruchfehlers</u>:
+
'''(3)'''&nbsp; Correct is the <u>proposed solution 1 &nbsp; &rArr; &nbsp;  increase of the termination error</u>:
*Mit dieser Maßnahme wird gleichzeitig&nbsp; $T_{\rm P}$&nbsp; von&nbsp; $8T$&nbsp; auf&nbsp; $4T$&nbsp; halbiert.  
+
*This measure simultaneously halves&nbsp; $T_{\rm P}$&nbsp; from&nbsp; $8T$&nbsp; to&nbsp; $4T$&nbsp;.*Thus, only samples in the range&nbsp; $–2T \leq t < 2T$, are taken into account, which increases the termination error.  
*Berücksichtigt werden somit nur noch Abtastwerte im Bereich&nbsp; $–2T \leq t < 2T$, wodurch der Abbruchfehler erhöht wird.  
+
*The mean square error&nbsp; $(\rm MQF)$&nbsp; steigt dadurch beim Gaußimpuls&nbsp; $x_1(t)$&nbsp; von&nbsp; $0.15 \cdot 10^{-15}$&nbsp; auf&nbsp; $8 \cdot 10^{-15}$, obwohl der Aliasingfehler durch diese Maßnahme sogar etwas kleiner wird.
*Der mittlere quadratische Fehler&nbsp; $(\rm MQF)$&nbsp; steigt dadurch beim Gaußimpuls&nbsp; $x_1(t)$&nbsp; von&nbsp; $0.15 \cdot 10^{-15}$&nbsp; auf&nbsp; $8 \cdot 10^{-15}$, obwohl der Aliasingfehler durch diese Maßnahme sogar etwas kleiner wird.
 
  
  

Revision as of 21:05, 21 March 2021

Gaussian pulse, square pulse, sinc pulse and some parameters

We consider three pulse-like signals, namely

  • Gaussian pulse  with amplitude  $A$  and equivalent duration  $T$:
$$x_1(t) = A \cdot {\rm e}^{- \pi (t/T)^2} \hspace{0.05cm},$$
  • Rectangular pulse  $x_2(t)$  with amplitude  $A$  and (equivalent) duration  $T$:
$$x_2(t) = \left\{ \begin{array}{c} A \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} |t| < T/2 \hspace{0.05cm}, \\ |t| > T/2 \hspace{0.05cm}, \\ \end{array}$$
  • a so called  Sinc pulse  according to the following definition:
$$x_3(t) = A \cdot {\rm si}(\pi \cdot t/ T) ,\hspace{0.15cm}{\rm si}(x) = \sin(x)/x\hspace{0.05cm}.$$

Let the signal parameters be  $A = 1\ {\rm V}$  and  $T = 1\ {\rm ms}$ in each case.

The conventional  Fourier Transform  leads to the following spectral functions:

  • $X_1(f)$  is also Gaussian,
  • $X_2(f)$  runs according to the  $\rm si$–function,
  • $X_3(f)$  is constant for  $|f| < 1/(2 T)$  and outside zero.


For all spectral functions,  $X(f = 0) = A \cdot T$.

If the discrete-frequency spectrum is determined by the  Discrete Fourier Transform(DFT)  with the DFT parameters

  • $N = 512$   ⇒   number of samples considered in the time and frequency domain,*$f_{\rm A}$   ⇒   interpolation distance in the frequency domain,


this will lead to distortions due to truncation and/or aliasing errors.


The other DFT parameters are clearly fixed withn&bsp; $N$  uan  $f_{\rm A}$  .The following applies to these:

$$f_{\rm P} = N \cdot f_{\rm A},\hspace{0.3cm}T_{\rm P} = 1/f_{\rm A},\hspace{0.3cm}T_{\rm A} = T_{\rm P}/N \hspace{0.05cm}.$$

The accuracy of the respective DFT approximation is captured by thenbsp; mean square error  (MSE, here MQF):

$${\rm MQF} = \frac{1}{N}\cdot \sum_{\mu = 0 }^{N-1} \left|X(\mu \cdot f_{\rm A})-\frac{D(\mu)}{f_{\rm A}}\right|^2 \hspace{0.05cm}.$$

The resulting MSE values are given in the graph above, valid for  $N = 512$  as well as for

  • $f_{\rm A} \cdot T = 1/4$,
  • $f_{\rm A} \cdot T = 1/8$,
  • $f_{\rm A} \cdot T = 1/16$.





Hints:



Questions

1

Which range  $|f| \leq f_{\text{max}}$  is covered with  $N = 512$  and  $f_{\rm A} \cdot T = 1/8$ ?

$f_{\text{max}} \cdot T\ = \ $

2

At what time interval  $T_{\rm A}$  are the sampled values of  $x(t)$  available?

$T_{\rm A}/T\ = \ $

3

Due to which effects does the MSE value for the Gaussian pulse increase when using   $f_{\rm A} \cdot T = 1/4$  instead of  $f_{\rm A} \cdot T = 1/8$  verwendet?

The truncation error is significantly increased.
The aliasing error is significantly increased.

4

Due to what effects does the MSE value for the Gaussian momentum increase when using  $f_{\rm A} \cdot T = 1/16$  instead of $f_{\rm A} \cdot T = 1/4$  verwendet?

The termination error is significantly increased.termination
The aliasing error is significantly increased.

5

Compare the MQF(MSE) values of the rectangular pulse  $x_2(t)$  with those of the Gaussian pulse  $x_1(t)$. Which of the following statements are true?

$\rm MQF$  becomes larger because the spectral function  $X_2(f)$  decays asymptotically slower than  $X_1(f)$.
The aliasing error dominates.
The termination error dominates.

6

Compare the MQF values of the slit pulse  $x_3(t)$  with those of the Gaussian pulse  $x_1(t)$. Which of the following statements are true?

$\rm MQF$  becomes larger because the spectral function  $X_3(f)$  decays asymptotically slower than  $X_1(f)$.
The aliasing error dominates.
The termination error dominates.


Solution

(1)  With the DFT parameters  $N = 512$  and  $f_{\rm A} \cdot T = 1/8$  the following follows after multiplying the two quantities:

$$f_{\rm P} \cdot T = N \cdot (f_{\rm A} \cdot T) = 64.$$
  • This covers the frequency range  $–f_{\rm P}/2 \leq f < f_{\rm P}/2$ :
$$f_{\rm max }\cdot T \hspace{0.15 cm}\underline{= 32}\hspace{0.05cm}.$$


(2)  The periodisation of the time function is based on the parameter  $T_{\rm P} = 1/f_{\rm A} = 8T$.

  • The distance between two samples is therefore
$$T_{\rm A}/T = \frac{T_{\rm P}/T}{N} = \frac{8}{512}\hspace{0.15 cm}\underline{ = 0.015625}\hspace{0.05cm}.$$


(3)  Correct is the proposed solution 1   ⇒   increase of the termination error:

  • This measure simultaneously halves  $T_{\rm P}$  from  $8T$  to  $4T$ .*Thus, only samples in the range  $–2T \leq t < 2T$, are taken into account, which increases the termination error.
  • The mean square error  $(\rm MQF)$  steigt dadurch beim Gaußimpuls  $x_1(t)$  von  $0.15 \cdot 10^{-15}$  auf  $8 \cdot 10^{-15}$, obwohl der Aliasingfehler durch diese Maßnahme sogar etwas kleiner wird.


(4)  Richtig ist der Lösungsvorschlag 2   ⇒   Erhöhung des Aliasingfehlers:

  • Durch die Halbierung von  $f_{\rm A}$  wird auch  $f_{\rm P}$  halbiert.
  • Dadurch wird der Aliasingfehler etwas größer bei gleichzeitig kleinerem Abbruchfehler.
  • Insgesamt steigt beim Gaußimpuls  $x_1(t)$  der mittlere quadratische Fehler  $(\rm MQF)$  von  $1.5 \cdot 10^{-16}$  auf  $3.3 \cdot 10^{-16}$.


(5)  Richtig sind die Lösungsvorschläge 1 und 2:

  • Wie aus der Grafik zu ersehen ist, trifft die letzte Aussage nicht zu im Gegensatz zu den ersten beiden.
  • Aufgrund des langsamen,  $\rm si$–förmigen Abfalls der Spektralfunktion dominiert der Aliasingfehler.
  • Der  $\rm MQF$–Wert ist bei  $f_{\rm A} \cdot T = 1/8$  mit  $1.4 \cdot 10^{-5}$  deshalb deutlich größer als beim Gaußimpuls  $(1.5 \cdot 10^{-16})$.


(6)  Richtig ist der Lösungsvorschlag 3:

  • Die Spektralfunktion  $X_3(f)$  hat hier einen rechteckförmigen Vorlauf, so dass die beiden ersten Aussagen nicht zutreffen.
  • Dagegen ist bei dieser  $\rm si$–förmigen Zeitfunktion ein Abbruchfehler unvermeidbar. Dieser führt zu den angegebenen großen  $\rm MQF$–Werten.